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[1] A linear analysis of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability
in the magnetosphere-ionosphere coupling system is presented. In the magnetosphere
plasma particles can move by the electric (E � B) drift, magnetic drift (gradient B drift
plus curvature drift), and inertia drift. Field-aligned currents are generated primarily from
divergence of the magnetic drift flux. They are closed via Pedersen currents in the
ionosphere. As a simple model, there is a surface of discontinuity both in the azimuthal
flow and the particle energy density, which extends longitudinally as projected to the
ionospheric plane. The gradient of the energy density is directed inward or outward so that
the plasma is RT unstable or stable, respectively. The present analysis shows that only a
velocity shear cannot drive the system KH unstable when the growth rate, gKH, of the
KH instability without Pedersen coupling is less than the inertial relaxation rate, n,
and that the presence of an energy density gradient allows a hybrid wave to grow even
when gKH < n. The wave growth is due to the active charge separation driving originally
the RT instability. The picture of auroral deformations now changes drastically. The
traditional picture is such that if the Pedersen coupling is properly taken into account,
KH waves of long wavelengths (^100 km at the ionospheric height) are found evanescent
in the main body of the auroral oval. A new one is such that wavy structures therein can
develop, only in the KH/RT hybrid mode, at the places where the particle energy
density has an inward gradient. Similarly, the stability of the inner boundary of the low-
latitude boundary layer is controlled by the RT stability conditions more influentially than
the KH conditions.
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1. Introduction

[2] The Kelvin-Helmholtz (KH) instability has been
widely studied for understanding a variety of phenomena
in magnetospheric physics such as the ULF pulsations in the
Pc3 to Pc5 ranges [e.g., Walker, 1981], auroral deformations
[e.g., Hallinan and Davis, 1970; Miura and Sato, 1978;
Wagner et al., 1983; Murphree et al., 1994; Yamamoto et
al., 1994], and the momentum or mass transport of the solar
wind plasma across the low-latitude boundary layer (LLBL)
[e.g., Axford and Hines, 1961; Sckopke et al., 1981; Miura,
1995; Fairfield et al., 2000; Matsumoto and Hoshino,
2006]. An important fact influencing the KH instability in
the magnetosphere is that the field lines are connected to the
conductive ionosphere [e.g., Lotko et al., 1987; Lotko and
Shen, 1991; Lysak et al., 1995]. Keskinen et al. [1988]
performed the first numerical simulation of the electrostatic

KH instability with ionospheric Pedersen conductivity cou-
pling.Wei and Lee [1993] conducted a numerical simulation
for the development of KH-produced plasma vortices in a
system of the LLBL-ionosphere electrostatic coupling.
Miura and Kan [1992] showed the stabilizing effect of
the ionospheric line-tying on the magnetohydrodynamic KH
instability through a three-dimensional linear analysis.
[3] A number of authors [e.g., Wolf, 1983; Southwood

and Kivelson, 1987, 1989] have believed that the low-
energy (0.1–10 keV) particle population in the plasma
sheet is basically stable to the Rayleigh-Taylor (RT) insta-
bility, while the RT instability at the plasmapause has been
discussed by, for example, Richmond [1973] and that in the
Van Allen belt by, for example, Chang et al. [1965]. On the
contrary, the numerical simulation by Yamamoto et al.
[1997a] showed that the auroral omega bands may be the
manifestation of RT waves growing in the plasma
sheet. This result suggests that the plasma sheet assumes
an RT-unstable configuration, at least in the recovery phase
of a substorm during which omega bands are frequently
observed. According to the simulation for the generations of
the region 0, region 1 and region 2 field-aligned currents
(FACs) [Yamamoto and Inoue, 2004, hereinafter referred to
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as YI04], the region 1 FACs [e.g., Iijima and Potemra,
1978] are produced around the interface between nonadia-
batic and adiabatic plasmas where the particle energy
density has an inward (equatorward as mapped to the
ionosphere) gradient. (This gradient essentially comes from
the nonadiabatic acceleration of particles in the tail current
sheet.) In such a place the plasma is potentially unstable to
the RT instability. It is interesting to note here the earlier
observational inference by Goertz and Baumjohann [1991]:
the plasma sheet contains a mixture of high-entropy (i.e.,
low-density and high-temperature) ‘‘bubbles’’ and low-
entropy ‘‘blobs’’. (For explanation of bubbles and blobs,
see also Pontius and Wolf [1990].) This signature may be
interpreted as a consequence of frequent occurrence of the
RT instability in the tail plasma sheet.
[4] Considerable attention has been paid to the coupling

of the KH instability and the RT instability in the terrestrial
magnetosphere/ionosphere. For example, Farrugia et al.
[1998] theoretically studied the hybrid KH/RT instability at
the dayside magnetopause, in a situation that it is in
accelerated motion, being subject to an effective gravita-
tional field. Hysell and Kudeki [2004] discussed a possibil-
ity that the KH instability competes with the collisional RT
instability in the equatorial F region ionosphere under some
conditions. Matsumoto and Hoshino [2006] suggested that
the nonlinear coupling of the KH and RT instabilities play
an important role, through turbulent mixing of plasmas, in
the transport mechanism of the solar wind plasma into the
Earth magnetosphere, while they did not study the linear
coupling. In general, the charge separation perpendicular to
the field lines that drives the RT instability in the magne-
tosphere is short-circuited by the large electron conductivity
in the parallel direction, producing field-aligned currents
which close in the ionosphere. So far, however, little
attention has been paid to such discharging effect on the
hybrid KH/RT instability, at least, in magnetospheric
physics.
[5] The present paper is a first theoretical study on the

hybrid KH/RT instability in the magnetosphere-ionosphere
(M-I) coupling system. The growth of a hybrid wave will be
shown to be determined as a balance of the four agents:
velocity shear, energy density gradient, inertial effect, and
ionospheric conductivity. Particular emphases are to be laid
on the hybrid wave growth in a situation that a KH wave is
evanescent and on the hybrid wave stability in a situation
that a KH wave grows.

2. Basic Equations for M-I Coupling

[6] The present analysis is electrostatic so that the effect
of the Alfvén wave transmission in the magnetosphere is
neglected. (For this approximation, the wave growth time,
g�1, is required to be longer than the transit time of an
Alfvén wave between the ionosphere and the equator;
roughly, g�1 should be greater than a few minutes.) The
drift approximation is used for the perpendicular motions of
particles for slow and large-scale phenomena of temporal
and spatial scales much greater than the ion cyclotron period
and radius, respectively. For the analysis of an electrostatic
instability, the conservation of space charge in the M-I
coupling need to be described mathematically.

[7] The flux tube content, Nj, is defined as the number of
particles of species j (proton or electron) in a flux tube with
unit (ionospheric) cross section:

Nj �
Z se

si

nj sð Þ Bi

B sð Þ ds; ð1Þ

where nj(s) is the number density of species j, s is the field-
aligned distance, se and si are the distances to the equator
and the ionospheric height, respectively; B(s) and Bi are the
magnetic field intensities at distances s and si, respectively.
(In the present analysis a hydrogen plasma is assumed
unless otherwise stated, and the field lines are assumed to
be closed.) Provided that the velocity distribution of particles
is isotropic, nj(s) is constant along a field line so that
equation (1) is reduced to Nj = n jBiRB, where RB is the flux
tube volume defined as

RB �
Z se

si

1

B sð Þ ds: ð2Þ

The flux tube energy content, E, of protons is defined as the
integral over the flux tube volume:

E �
Z se

si

wnp
Bi

B sð Þ ds ¼ wNp; ð3Þ

where w is the proton kinetic energy averaged in velocity
space and it is independent of s because of isotropy of the
velocity distribution.
[8] The flux tube content N j must satisfy the particle

conservation law in the ionospheric plane:

@

@t
N j þ divGj ¼ Q j � Lj; ð4Þ

where div is operated in the ionospheric plane which is
assumed to be perpendicular to the ambient magnetic field
Bi; the particle influx Q j and outflux Lj represent supply
from and precipitation into the ionosphere, respectively. The
lateral particle flux G j is defined as

G j ¼ G j
E þ G j

m þ G j
in þ G j

d

�
Z se

si

X
VE sð Þð þV j

m sð Þ þ V
j
in sð Þ þ V

j
d sð Þ

� Bi

B sð Þ ds; ð5Þ

where
P

denotes the summation over all the particles of
species j in unit volume; VE(s), Vm

j (s), Vin
j (s), and Vd

j(s) are
the ionospheric projections of the electric drift, magnetic
drift (gradient B drift plus curvature drift), inertia drift, and
cross-field diffusion velocities (see Appendix C of YI04) of
a particle of species j, respectively. The fluxes GE

j , Gin
j , Gm

j ,
and Gd

j are then termed the electric drift, magnetic drift,
inertia drift, and cross-field diffusion fluxes, respectively.
[9] Assuming the equipotential field lines, the electric

drift velocity VE(s) at any distance s is found to be identical
to VE(si), i.e., the electric drift velocity in the ionospheric
plane. (Hereafter VE(si) is simply denoted by VE.) The flux
of GE

j + Gm
j + G in

j in equation (5) is then written as

G j
E þ G j

m þ G j
in ¼ N j VE þ V j

m þ V
j
in

� �
; ð6Þ
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where V m
j and Vin

j are the averaged magnetic drift and
inertia drift velocities which are defined as

V j
m ¼ 1

Nj

Z se

si

X
V j

m sð Þ Bi

B sð Þ ds ð7Þ

and

V
j
in ¼

1

Nj

Z se

si

X
V

j
in sð Þ Bi

B sð Þ ds; ð8Þ

respectively. The average magnetic drift velocity per unit
energy, nm, is defined as

nm ¼ 1

RB

Z se

si

1

wn p

X
V p

m sð Þ 1

B sð Þ ds ¼
V p

m

w
; ð9Þ

and it is shown to be expressed as [Vasyliunas, 1970;
Yamamoto et al., 1996]

nm ¼ � 2

3e

1

RBBi

bi �rRB; ð10Þ

where e (>0) is the electronic charge and bi is the unit vector
in the direction of Bi. Neglecting r?Bi as well as rotBi

(because the ionospheric field Bi is well approximated by
the dipole field) leads to the conditions of

divVE ¼ 0 and divnm ¼ 0: ð11Þ

The validity of these conditions is shown in Appendix A,
item 1.
[10] It is assumed that the protons obey the adiabatic

equation of state, specifically wRB
2/3 is conserved along the

trajectory of a ‘‘proton fluid’’ which moves in the iono-
spheric plane with the total velocity, Vt, of VE + V m

p [Wolf,
1983]:

d

dt
wR

2=3
B

� �
� @

@t
þ V t � r

� 	
wR

2=3
B

� �
¼ 0: ð12Þ

Noting that nm is perpendicular to rRB (see equation (10)),
nm � rw vanishes for the case of w / RB

�2/3. In this case,
from conditions of (11), the conservation of protons in a
flux tube, equation (4), is reduced to

dNp=dt ¼ �divG p
d ; ð13Þ

where both Q p and Lp for protons are assumed negligible
(see Appendix B of YI04) and Gin

p is neglected. (For
conditions for this assumption, see Appendix A, item2.)
Using the relation of E = wNp, combination of equations
(12) and (13) yields

d

dt
ER2=3

B

� �
¼ �wR

2=3
B divGp

d : ð14Þ

Because Gd
p is expressed as Gd

p = �(D/w)rE [YI04], where
D is the diffusion rate for the ionospheric projections of
protons, averaged over the flux tube volume, equation (14)
may be written as

dE*=dt ¼ Dr2E*; ð15Þ

where E* � ERB
2/3 is a conserved quantity in the case of

vanishing divergence of Gd
p and the spatial variations of D/w

and RB
2/3 are ignored for retaining only lowest-order effects

of diffusion. (For some details, see Appendix A, item 3.)
[11] An approximate expression for the inertia (polariza-

tion) drift flux of protons may be given by

Gp
in ¼ Cm=eð ÞdE=dt; ð16Þ

Figure 1. Two-dimensional plots of the inertial capaci-
tance Cm in the ionospheric plane, where the noon/midnight
meridian and the 60�, 70�, and 80� magnetic latitude lines
are indicated. It is calculated in the magnetically closed
region at latitudes less than 80�, using the Kp = 0 version of
the Tsyganenko model [Tsyganenko, 1989] with an addi-
tional constant Z-component (BZ

e) of �4 nT, in (b), or 4 nT,
in (c). (Such addition is to include the effect of the IMF BZ

penetration into the magnetosphere; a nontilted dipole is
used as the field from the Earth’s interior.) For representing
Cm for the plasma sheet, it is assumed that the number
density n changes spatially under the conditions that the
flux tube content nBiRB is constant and n is 1 cm

�3 at places
where the flux tube volume is equal to the reference flux
tube volume defined in section 4, i.e., RB = RB,0.
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where E is the ionospheric electric field perpendicular to the
magnetic field. The inertial capacitance, Cm [e.g., Keskinen
et al., 1988], is defined as

Cm �
Z se

si

Mnp sð Þ
B sð Þ2

ds; ð17Þ

where M is the proton mass. For the conditions required for
that approximation, see Appendix A of Yamamoto et al.
[1996], while the expression for Gin

p , equation (16), turns out
to be relevant for studying how the ‘‘classical’’ KH
instability is modified by the RT instability. (Examples of
the distributions of Cm in the magnetosphere are shown in
Figures 1 and 2.)
[12] The flux tube volume below a low-altitude region of

field-aligned electric fields accelerating electrons [e.g.,
Mozer and Hull, 2001] is only a small fraction of the total
flux tube volume. For the majority of plasma particles in the
magnetosphere, the temperature of electrons can then be
assumed to be even lower than the ion temperature. In the

present analysis, electrons are treated as cold particles so
that their magnetic drift flux, Gm

e , is neglected, and the
electron inertia drift is also neglected.
[13] The total electron flux of e(Le � Qe) is considered to

be an FAC density, Jk, at the ionospheric height. A positive
value of Jk is for an upward (i.e., flowing away from the
Earth) FAC. Then, subtracting conservation equation (4) for
the proton flux tube content (N p) from that for the electron
one, the charge neutrality condition of N p ’ N e yields

Jk ¼ e Le � Qeð Þ ¼ e div Gp
m þ Gp

in þ Gp
d

� �
; ð18Þ

where Gm
e and Gin

e are neglected as assumed above, and Gd
e

can be neglected as discussed by Yamamoto et al. [1997b];
Jkm � e div Gm

p and Jkd � e div Gd
p are current densities of

the magnetic-drift-induced and diffusion-induced FACs,
respectively. While the diffusion-induced FACs are thought
to be responsible for the generation of the region 0 FACs
[YI04] and the formation of discrete auroras [Yamamoto et
al., 1999], they may be ignored for simple discussion on the

Figure 2. (a) Two-dimensional plot of Cm in the low-latitude boundary layer (LLBL) as modeled by
Kaufmann et al. [1993] and Yamamoto and Ozaki [2005]. The evaluation of Cm is based on the Kp = 0
version of the 1989 Tsyganenko model. It is assumed that n changes spatially under the conditions that
nBiRB is constant and n is 1 cm�3 at X = 0 on the outer boundary of the closed LLBL, where RB =
33.7RB,0. (This point is mapped to an ionospheric position of 78.9� in latitude and 13.3 in MLT.) (b)
Profiles of Cm along the inner and outer boundaries of the closed LLBL, which are plotted against the
longitude (in degree) measured from the noon meridian. Extremely high values (>103 F) of Cm come
from great volumes of the flux tubes extending far away from the Earth. The values in this figure are for
the flux tubes loaded ‘‘fully’’ with LLBL particles, i.e., having the constant content of nBiRB. Actual
values of Cm around the inner boundary will be given roughly by halving the values in the figure and
neglecting smaller contributions from the plasma sheet (in Figures 1a–1c). Thus the LLBL inner
boundary has values of Cm greater than �200 F.
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KH and RT instabilities. Using Gm
p = Enm, div nm = 0 and

nm � rRB = 0, the current density Jkm can be written as

Jkm ¼ enm � rE ¼ e R
�2=3
B nm � rE*: ð19Þ

[14] The current continuity in the uniform ionosphere is
expressed as

SPr2f ¼ �SPdivE ¼ Jk; ð20Þ

where f is the electrostatic potential and SP is the height-
integrated Pedersen conductivity. Note that divergence of
the Hall current is negligible for uniform height-integrated
conductivities. Finally, combination of equations (16) and
(18)–(20) yields

div Cm

d

dt
rf

� 	
¼ �SPr2fþ e R

�2=3
B nm � rE*: ð21Þ

Using VE = bi � rf/Bi and neglecting the spatial variations
of Cm and Vm

p , the above equation is rewritten as

Cm

d

dt
r2f ¼ �SPr2fþ e R

�2=3
B nm � rE*: ð22Þ

The Cm and Vm
p variations may not be neglected in regions

relatively near the open/closed boundary. Retaining such
inhomogeneity, however, would bring about some difficulty
in elucidating the coupling between the KH and RT
instabilities both in standard form.

3. Linearized Equations

[15] Equation (22) is to be solved, under the condition of
(15), for a small amplitude perturbation in potential, df:

f ¼ f0 þ df ¼ f0 xð Þ þ df xð Þ exp i kyy� wt
� �

; ð23Þ

where f0 is the unperturbed part of f; w is the wave
frequency and ky (>0) is the azimuthal wave number (2p/l).
Here the (local) Cartesian coordinates x, y and z are taken
such that the directions of positive x and y are poleward and
westward in the ionospheric plane, respectively; the
directions of Bi and nm are assumed to be in the negative
z-direction and positive y-direction, respectively. When f0

is assumed uniform azimuthally, the unperturbed electric
drift velocity has only a y-component of VE,0(x). In harmony
with f0 + df in equation (23), the ‘‘flux tube energy
content’’ E* is decomposed as

E* ¼ E*0 þ dE* ¼ E*0 xð Þ þ dE* xð Þ exp i kyy� wt
� �

: ð24Þ

[16] The linearized form of equation (15) is obtained by
substituting equations (23) and (24) into it:

i w� kyVt xð Þ
� �

dE* xð Þ � i ky=Bi

� �
df xð ÞE* 0

0 xð Þ

¼ D k2y dE* xð Þ � dE* 0 0 xð Þ
� �

; ð25Þ

where Vt(x) is the unperturbed westward drift velocity, i.e.,
Vt(x) = VE,0(x) + jVm

pj; dE*0(x)/dx is denoted by E*00 (x). (The

unperturbed part of equation (15) is the diffusion equation
of @E*0/@t = Dr2E*0.) Linearizing equation (22) results in

w� kyVt xð Þ þ in
� �

�k2y df xð Þ þ df0 0 xð Þ
� �

þ kyVE;0
0 0 xð Þdf xð Þ

¼ �kye
R
�2=3
B

Cm

nmdE* xð Þ; ð26Þ

where nm = jnmj and n is the inertial relaxation rate SP/Cm

[Lotko et al., 1987; Keskinen et al., 1988].

4. Coupling Between KH and RT Instabilities

[17] To study the coupling between the KH and RT
instabilities both in standard form, the diffusion term is
dropped in equation (25). (The diffusion effect on the RT
instability is studied in Appendix B.) Eliminating dE*0(x)
from equations (25) and (26), the mode equation for the
hybrid KH/RT instability is given by

w� kyVt xð Þ þ in
� �

�k2y df xð Þ þ df0 0 xð Þ
� �

þ kyVE;0
0 0 xð Þdf xð Þ

¼ ngm xð Þ
k2y df xð Þ

w� kyVt xð Þ ; ð27Þ

where gm(x) is defined as gm(x) = �(enm/BiSPRB
2/3)E*00(x).

When gm(x) � 0, Vm
p = 0 and SP = 0 (hence n = 0), the

above equation is reduced to

df0 0 xð Þ þ �k2y þ
kyVE;0

0 0 xð Þ
w� kyVE;0

� 	
df xð Þ ¼ 0; ð28Þ

which gives the standard dispersion relation for the
transverse KH instability [e.g., Michalke, 1964]. Following
the conventional reduction [e.g., Keskinen et al., 1988],
equation (27) is rewritten as

d

dx
A xð Þ dF xð Þ

dx

� 	
¼ k2y A xð Þ

� 1þ ngm xð Þ
w� kyVt xð Þ
� �

w� kyVt xð Þ þ in
� �

( )
F xð Þ;

ð29Þ

where A(x) = (w � kyVt(x) + in)2 and F(x) = df(x)/(w �
kyVt(x) + in). When SP = 0, hence n = 0 but ngm (x)
(independent of SP) is retained, this equation itself is
essentially identical to that describing the joint KH and RT
instabilities at the magnetopause under the conditions of k �
B = 0 and @r/@y = 0 in H [see Farrugia et al., 1998].
Besides the equivalent gravity force (g$ ewnmN/CmBi), the
main difference is only the appearance of the Doppler-
shifted frequency w–kyVt in the gravitational term here
instead of w–kyVE,0. The former type of Doppler shift
necessarily arises when plasma particles move by the
magnetic drift, which is the cause of the ‘‘gravity force’’.
[18] A velocity shear may appear in the region where the

energy density has a significant gradient, primarily, in
latitude, as will be the case with, for example, the generation
of the region 1 FACs in the plasma sheet [YI04] and in the
low-latitude boundary layer [Yang et al., 1994; Yamamoto et
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al., 2002]. The FAC generation is possible in a situation that
the energy density has a gradient in the direction of the
average magnetic drift while the azimuthal gradient is even
smaller in magnitude than the latitudinal one. For a simple
solution to equation (29), consider a two-dimensional sys-
tem with a sharp boundary at x = 0: The x dependence of
VE,0(x) is taken as

VE;0 xð Þ ¼ VE;0 0ð Þ þ lim
Le!þ0

DV tanh x=Leð Þ: ð30Þ

The profile of E*0(x) has a jump of DE at x = 0 so that

dE*0 xð Þ
dx

¼ �DEd xð Þ; ð31Þ

where d(x) is the Dirac delta function. In this system gm(x) is
written as

gm xð Þ ¼ umd xð Þ; ð32Þ

where um � (enm/BiSPRB
2/3)DE . In either region of x > 0 or

x < 0, the solution to equation (29) is then expressed as
F(x) = a+ exp(�kyx) or F(x) = a� exp(kyx), respectively.
The step function profile in VE,0(x) or E*0(x) may limit the
analysis to the case of long wavelength as kyL/2 = pL/l� 1
[Keskinen et al., 1988; Huba, 1996a], where L stands for the
actual scale length for dVE,0(x)/dx and dE*0(x)/dx. The
applicability of the long wavelength approximation will be
discussed later.
[19] The matching conditions at x = 0 are obtained by the

following integrations of equation (29):

A xð Þ dF xð Þ
dx

� 
e
�e
¼

Z e

�e
dxk2y A xð Þ

� 1þ ngm xð Þ
w� kyVt xð Þ
� �

w� kyVt xð Þ þ in
� �

( )
F xð Þ

ð33Þ

and

F xð Þ½ �e�e¼
Z e

�e
dx0

1

A x0ð Þ

Z x0

�1
dxk2y A xð Þ

� 1þ ngm xð Þ
w� kyVt xð Þ
� �

w� kyVt xð Þ þ in
� �

( )
F xð Þ: ð34Þ

In the limit of e ! 0, these equations are reduced to

� kyA þ0ð Þaþ � kyA �0ð Þa� ¼ k2y A 0ð Þ

� num
w� kyVt 0ð Þ
� �

w� kyVt 0ð Þ þ in
� �

( )
F 0ð Þ

ð35Þ

and

aþ � a� ¼ 0: ð36Þ

The dispersion relation is then given by

w� kyVt þ0ð Þ þ in
� �2þ w� kyVt �0ð Þ þ in

� �2
¼ �

kynum w� kyVt 0ð Þ þ in
� �
w� kyVt 0ð Þ : ð37Þ

Let the frequency w be expressed as

w ¼ kyVt 0ð Þ þ ig; ð38Þ

where the phase velocity is assumed to be Vt(0) and g is the
growth rate with a positive value for growth. Let the growth
rates associated with the KH and RT instabilities, gKH and
gRT, be defined as

gKH ¼ kyDV and gRT ¼ kyum=2 ¼ enm=BiSPR
2=3
B

� �
kyDE=2;

ð39Þ

respectively. (If ky < 0 is assumed, gRT � �kyum/2 =
jkyjum/2.) Exactly, the former is the growth rate of the KH
instability without Pedersen coupling, in other words the
KH growth rate in the magnetosphere connected with an
insulated ionosphere, while the latter is the RT growth rate
in the limit of Cm ! 0, in the M-I coupling system.
Variables being normalized by n, denoted by~(for example,
~g = g/n), equation (37) is written as

� 1þ ~gð Þ2þ ~g2KH þ ~gRT
1þ ~g
~g

¼ 0: ð40Þ

Unless ~g = 0, the above equation is equivalent to

F ~gð Þ � ~g3 þ 2~g2 þ 1� ~g2KH � ~gRT
� �

~g � ~gRT ¼ 0: ð41Þ

Except for the case of ~gRT = 0, the marginal stability of ~g =
0 cannot be treated by the present theory, because the
denominator of the third term in equation (40) vanishes.

4.1. Analytic Solution

[20] If ~gRT > 0, the function F(~g) defined in equation (41)
has the following characteristics: F(0) < 0 and the equation
of dF(~g)/d~g = 0 has at least one negative solution. Therefore
the equation of F(~g) = 0 has only one positive solution
when ~gRT > 0.
[21] For the case of ~gRT = 0, the solution to equation (40)

without the third term, for a growing wave, is

~g ¼ ~gKH � 1 i:e:; g ¼ gKH � nð Þ for ~gKH > 1: ð42Þ

Needless to say, this solution can also be obtained from
equation (41), setting ~gRT at 0, but that equation has a
spurious solution of ~g = 0 as noted above. As already
addressed, the growth rate in the limit of SP ! 0 is given by
gKH. Moreover, equation (42) indicates that the growth rate
g of the KH instability can be significantly decreased by the
effect of the M-I coupling, as predicted by Keskinen et al.
[1988]. (A comparison of their model with the present one
in the Pedersen conductivity coupling of the KH instability
is further discussed in Appendix C.) This effect is promoted
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by higher Pedersen conductivity and smaller inertial
capacitance.
[22] Equation (42) indicates the existence of a critical

condition for the onset of the KH instability in the M-I
coupling system: gKH is required to exceed n. Such a
condition is quite important for understanding the auroral
phenomena in the magnetosphere-ionosphere system. With-
out it, the system should be full of KH waves, because a
velocity shear, i.e., space charge exists practically every-
where.
[23] For the case of ~gKH = 0, equation (41) has a solution

of

~g ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~gRT

p� �
=2 for ~gRT > 0; ð43Þ

which is plotted against ~gRT in Figure 3a. In the limit
of Cm ! 0, j~gRTj (,j~gKHj) � 1. It follows that ~g � ~gRT
as mentioned earlier. As is illustrated in Figure 3b, for
~gRT > 0 the growth rate ~g in equation (43) is smaller than
~gRT, the growth rate of the RT instability without inertial
effect. This fact means that the RT instability can be
significantly suppressed by the inertial effect, but not
extinguished by it.

4.2. Numerical Solution

[24] The solutions to the cubic equation (41) are numer-
ically solved for any set of ~gRT and ~gKH. Figure 4 shows the
growth rate ~g as a function of ~gRT and ~gKH, for the fastest
growing mode (designated as the first solution). The second
solution of ~g is negative when ~g is real. The third solution is
positive for ~gRT < 0 and ~gKH > 1, but its magnitude is
smaller than that of the first solution in Figure 4. In the
followings the fastest growing wave solution (Figure 4) is
only taken up. Figure 5a shows the ratio of ~g(~gRT, ~gKH)/~g(0,
~gKH) for ~gKH > 1, namely, the growth rate of the hybrid
mode relative to that of the KH mode. For any value of ~gKH
(>1), the hybrid mode growth rate increases with ~gRT and
vanishes at a certain negative value of ~gRT. Figure 5b shows
the ratio of ~g(~gRT, ~gKH)/~g(~gRT, 0) for ~gRT > 0, namely, the
growth rate of the hybrid mode relative to that of the RT
mode. For any value of ~gRT (>0), the hybrid mode growth
rate increases with ~gKH. In short, as naturally expected, both
drivers of the KH and RT instabilities, namely, the velocity
shear and the energy density gradient build up the hybrid
instability which is enhanced in comparison to the instabil-
ity either in the KH or RT mode.

Figure 3. Growth rate of the fastest growing mode, a
solution to equation (41) for the case of ~gKH = 0: (a) ~g = g/n
and (b) g/gRT, which are given by equation (43), are plotted
against ~gRT (>0).

Figure 4. Growth rate of the fastest growing mode: ~g is
shown as a function of ~gRT and ~gKH. Plot at the top is in the
range of j~gRTj � 20 and 0 � ~gKH � 20; the bottom one is an
expanded plot for small values of j~gRTj and ~gKH. The thin
black lines are for demarcation between ~g > 0 and ~g < 0.
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[25] As mentioned above, the present analysis is applica-
ble to the case of kyL/2 � 1. To assess more precise
conditions, first look into Figure 3 of Michalke [1964],
the plot of the KH growth rate versus the wave number for
the hyperbolic tangent velocity profile. The tangent to the
growth rate curve at the origin corresponds to the long
wavelength approximation, being well fitted to the curve in
the range of kyL/2 ] 1/4, where the abscissa is appropriately
converted. Similarly, looking into the growth rate of the RT
instability for the energy density profile with finite thickness
(for example, Figure B1a), the long wavelength approxima-
tion is found to be satisfactory for kyL/2 ] 1/4. (Figure B1a
shows that for the case of D � 0, g/gm,0 � 0.25 at kyL = 0.5,
equivalently g � gRT, which is in good agreement with the
result of equation (43) in the limit of Cm ! 0.) Thus the
results of the present analysis are assumed to be reasonable
for wavelengths of l ^ 4pL. If l < 4pL, the dispersion
relation of (41) will give the positive growth rates greater
than the actual ones. Hence the analysis of the hybrid
instability using smooth profiles in velocity and energy
density should be conducted in the future. Recalling that
the scale length L be even greater than the cyclotron radius

of auroral protons on the order of kilometers (as mapped to
the ionosphere), a requirement of the drift approximation,
the condition of l ^ 100 km at the ionospheric height is
practically imposed on the following discussions.
[26] The inertial relaxation rate n is evaluated as n >

0.08 s�1 for the main body of the plasma sheet (PS) with
SP > 4 mho and Cm < 50 F (see Figures 1a–1c). The main
body is here defined as the PS region excepting both the most
poleward part with Cm > 50 F or SP < 4 mho and the most
equatorward one with SP < 4 mho. In the present section, the
KH/RT stability is discussed only for the PS main body.
Application to other regions will be described in section 5.
[27] The growth rate of gKH is estimated as gKH] 0.03 s�1

for long azimuthal wavelength l of ^100 km and azimuthal
flow velocity with a variance (2DV) of ]1 km/s. (In Appen-
dix C the evaluation of a shear frequency is further discussed
in comparison with that by Keskinen et al. [1988].) Thus in
the PS main body gKH is less than n for wavelengths of
^100 km, meaning that such waves in the KH mode with
gRT = 0 cannot grow by itself (see equation (42)). The
situation drastically changes when gRT becomes positive,
even if it is much smaller than n, i.e., ~gRT� 1, that is, a hybrid
wave can grow with a growth rate of �gRT, as is seen from
Figure 4 or Figure 5b. For small values of ~gKH = gKH/n ]
0.03/0.08, the conditions for wave growth in the hybrid
mode are similar to those in the RT mode, namely, ~g is
primarily determined by ~gRT, being insensitive to ~gKH (see
those figures). This means that the RT instability is more
influential than the KH instability in the stability of large-
scale phenomena.
[28] Finally, gRT is numerically evaluated. The parameter

values are chosen as follows. The ionospheric magnetic
field, Bi is 6 � 104 nT; the average magnetic drift speed of
the plasma sheet protons, wnm is 400 m/s; the flux tube
content N is specified by the conditions that the number
density of particles, n is 1 cm�3 when they are contained in
a flux tube with the reference flux tube volume of BiRB,0 =
1.32 � 107 km, which is the value for the dipole field line
with a geocentric distance of 7 RE at the equator: N =
nBiRB,0 = 1.32 � 1016m�2. Assuming that the flux tube
content is conserved along a convection path, the upper
limit of (nm/RB

2/3)DE in the expression of gRT is approxi-
mated by wnmN. For SP > 4 mho and l ^ 100 km as
assumed above, gRT is estimated as gRT ] 0.11 s�1. Then
gRT may reach a value comparable to n, but in that case
the growth time of gRT

�1 is shorter than the Alfvén transit
time, invalidating the electrostatic approximation. While
Figure 3b shows that the maximal inertial effect, around
gRT/n � 0.11/0.08, is �40% reduction of the RT growth
rate, the inertial effect is quite small within the electro-
static limit, i.e., for gRT/n < 0.01/0.08. The effect of
particle diffusion may be more important for the RT
instability, which is examined in Appendix B, using the
energy density profile with a finite gradient in latitude.

5. Application to Auroral Deformations

[29] So far, auroral deformations have often been inter-
preted exclusively as a result of the KH instability, neglect-
ing the effects of ionospheric current closure and
concurrence of the RT instability. Here it is noted that the

Figure 5. Growth rate of the fastest growing mode:
(a) ~g(~gRT, ~gKH)/~g(0, ~gKH) for ~gKH > 1 and (b) ~g(~gRT, ~gKH)/
~g(~gRT, 0) for ~gRT > 0 are plotted in the (~gRT, ~gKH) space.
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both effects are a key to satisfactory understanding of some
auroral phenomena.

5.1. Dayside Aurora

[30] Basically it is assumed that the LLBL particle
population makes a major contribution to the generation
of the region 1 FAC in the LLBL region via the pressure-
gradient-driven mechanism [Yang et al., 1994; Yamamoto et
al., 2002]. On this line, either of two types of the dayside
aurora, the bright spots (BSs) and the radially aligned arcs
(RAs) are likely to arise from spatial modulation of the
inner boundary of an LLBL particle population [Yamamoto
and Ozaki, 2005, hereinafter referred to as YO05]. One
possible cause of the modulation of the LLBL inner
boundary was assumed to be the generation of KH waves
therein. Here in view of the hybrid KH/RT stability, this
possibility is reexamined.
[31] For long azimuthal wavelength of l ^ 100 km and

azimuthal flow velocity with a variance of 2DV � 1.5 km/s
[Sandholt et al., 1990], gKH is estimated as gKH � 0.047 �
(100/l) s�1, where l is in kilometer. (The more precise
evaluation of the KH growth rate around the LLBL inner
boundary was earlier made by, for example, Ogilvie and
Fitzenreiter [1989] using the ISEE 1 satellite data.)
[32] The inertial relaxation rate is estimated as n ] 0.03

s�1 for Cm > 200 F (see Figures 2a and 2b as well as their
legend). Note that such high values of Cm come from the
heavily loaded flux tubes in the LLBL as assumed in that
legend. Thus ~gKH is found to be ~gKH ^ 1.6 � (100/l). If gRT
� 0, as is seen from Figure 4 it is possible that KH waves
are developed around the LLBL inner boundary. It is also
noted that if a sufficiently strong shear appears, the KH
instability is excited even in the case of gRT < 0 (see
Figure 4). Looking into the numerical simulation of KH
vortices in the LLBL-ionosphere coupling by Wei and Lee
[1993], BSs arising from KH waves appear predominantly
in the postnoon sector, which could not explain the obser-
vations of BSs in the prenoon sector [e.g., Lui et al., 1989].
If the Tsyganenko model [e.g., Tsyganenko, 1989] is used in
mapping to the ionosphere, the BSs from that simulation
might be extended along the ‘‘radial direction’’ (away from
the cusp center) so that their shape may be dissimilar to that
of the observed BSs, while the deformation depends on
where the vortices are formed in the equatorial plane,
specifically, the distance to the open/closed boundary. As
will be discussed later, the ionospheric projection of fully
developed (round) vortices also seems dissimilar to the
linear configuration of individual arcs radially aligned.
[33] To evaluate gRT for the energy density gradient in the

LLBL particle population, the parameter values are chosen
as follows. A typical value of the average magnetic drift
speed of the LLBL protons with w � 200 eV, wnm is
�50 m/s as inferred from Figure 9 of Yamamoto et al.
[2002]; the number density of particles, n is 1 cm�3 when
they are contained in the flux tube at X = 0 on the outer
boundary of the closed LLBL (termed the cusp line in
YO05), the volume of which is RB = 33.7RB,0 (in the
Tsyganenko [1989] magnetic field model with Kp = 0), so
that the flux tube content there is given by N = nBiRB =
4.45 � 1017m�2. Note that region 1 FACs with observed
intensity profiles can be reproduced using such a model of
the flux tube (energy) content in the LLBL region [YO05].

For SP � 6 mho and l ^ 100 km, gRT is estimated as
gRT[LB] � �0.31 � (100/l) s�1, where the minus sign means
that the LLBL inner boundary is stable to the RT instability.
On the other hand, the plasma sheet (PS) particles may have
an inward gradient of the energy density in the region where
the LLBL and PS particles are mixed. The associated
growth rate of gRT is estimated using the parameter values
given in section 4: gRT[PS] � 0.074 � (100/l) s�1, where SP

� 6 mho is assumed. The ‘‘total growth rate’’, i.e., the sum
of gRT[LB] and gRT[PS] is gRT[T] � �0.24 � (100/l) s�1,
showing that the LLBL inner boundary is stable to the RT
instability in this specific example. However, the observa-
tions [e.g., Sckopke et al., 1981; Le et al., 1994, 1996] do
not necessarily show that the pressure of the LLBL particles
is greater than that of the PS ones. Therefore all the
possibilities of gRT[T] < 0 and gRT[T] ^ 0 need to be
considered.
[34] For the above numerical example of gRT[T] < 0, ~gRT(=

gRT/n) is found to be ~gRT ] �8 � (100/l). Noting that the
ratio of ~gKH/~gRT is independent of Cm, from Figure 4 the
LLBL inner boundary is found to be stable to the hybrid
KH/RT instability for long wavelength perturbations. It
should be emphasized that the boundary can be KH unstable
but that instability is suppressed by the RT stabilizing effect
acting in the place where the energy density has an outward
gradient in latitude. Other candidates for causing spatial
modulation of the LLBL inner boundary are assumed to be
KH waves at the sheath/LLBL interface [e.g., Fairfield et
al., 2000] and surface waves on the magnetopause which
could be caused by flux transfer events [Song et al., 1988]
or solar wind pressure fluctuations [Elphic and Southwood,
1987]. When the LLBL inner boundary is perturbed
slightly, as shown in Figure 4 of YO05 (for the case of
~Am = 0.2), under the influence of those ‘‘external’’ (outside
the magnetosphere) waves, space charges are created by
different magnetic drifts of ions and electrons around the
perturbed boundary, being responsible for the formation of
BSs (bright spots), while the resulting E � B drift motion
acts to suppress the amplification of the modulation as an
RT reacting/stabilizing process (Figure 6a). As studied by
YO05, this model can explain the occasional appearance
of BSs in the prenoon sector. Such dawn-dusk asymmetry
of the BS formation is closely related to the fact that the
associated FACs exhibit the dawn-dusk antisymmetry
characteristic of the large-scale region 1 currents, as
averaged over a couple of wave cycles, owing to the
inclination of the unperturbed LLBL inner edge to the
direction of the average magnetic drift.
[35] The modulation by external waves can be amplified

for the case of gRT[T] ^ 0. Suppose that an LLBL is newly
formed by sheath plasma entry across the deformed mag-
netopause boundary (Figure 6b) and that its inner edge has a
waveform as shown in Figure 4 of YO05 (for the case of
~Am = 1.0). According to the numerical model in YO05, RAs
will be created as a result of the charge separation in that
LLBL population. It is assumed that the effect of such
charge separation begins to suppress the boundary defor-
mation when the (flux tube) content of the new LLBL
population reaches a significant fraction of that of the
ambient plasma. (In the previous model of RAs by YO05,
the cause of the modulation of an injection front is assumed
to be the small-amplitude (‘‘primary’’) waves generated in

A06206 YAMAMOTO: HYBRID KH/RT INSTABILITY

9 of 16

A06206



the LLBL population proper with an outward pressure
gradient. However, the sustenance of these waves is incom-
patible with the modulation growth, namely the associated
E � B drift motion wipes out the primary waves.)
[36] The temporal and spatial development of RAs is

predicted as follows (see Figure 7). The front of a chain of
external waves propagates antisunward along the magneto-
pause at a speed of a few hundreds km/s. For a time period
of 5 min, the propagation distance is �10 RE. Provided that
the wavelengths of the external waves are given as shown in
Figure 4 of YO05, one to two cycles of RAs are newly
created around X = 0 during a 5-min period. The inward
deformation/progression of a newly formed LLBL near the
equator is mapped to the ionosphere, as extension of
individual arcs as if they emanated from the cusp (see

Figure 10b of YO05), although the statistical field model
like Tsyganenko’s may not be applicable to the mapping in
the case of a highly deformed magnetopause. If the mag-
netopause boundary deformation proceeds in time as in the
KH wave simulation by Fairfield et al. [2000], the time
required for ‘‘full extension’’ of an RA will be a few
hundred seconds. These features are consistent with the
observational morphology of developing RAs, Figure 3 of
Elphinstone et al. [1991]. (The ‘‘fan arcs’’ which are
observed, by the Viking ultraviolet imager, predominantly
in the morning sector when the IMF (interplanetary mag-
netic field) BZ is positive and BY is negative [Elphinstone et
al., 1991, 1993] may be one specific type of the RAs
identified by Meng and Lundin [1986] using the DMSP
(Defense Meteorological Satellite Program) imagery; they
appear both on the evening and morning sides, indepen-
dently of the IMF BZ. This fact may partly come from the
difference in spatial resolution between the DMSP and
Viking auroral images: in the latter a cluster of thin discrete
arcs do not seem to be identified.)
[37] For the case of gRT[T] > 0, the hybrid waves are likely

to be developed around the LLBL inner boundary. If these
waves extend to near the open/closed boundary, the result-
ing auroral pattern, i.e., the ionospheric projection of fully
developed (circular) vortices with negative charge looks like
a ‘‘fan’’ as a whole, but each ‘‘vane’’ is generally in
elliptical shape, being dissimilar to the linear (although
winding) configuration of individual arcs in the DMSP
images of RAs [Meng and Lundin, 1986]. This fact suggests
the unlikeliness of gRT[T] > 0. Resolving such uncertainty/
ambiguity in the relationship between the dayside aurora
and the plasma stability is a future task both in observational
and theoretical studies on magnetospheric physics.
[38] In summary, the BSs are likely to be formed as a

result of the magnetic-drift-induced charge separation acting
on the inner boundary of the LLBL particle population with
an outward pressure gradient, when it is slightly perturbed
by some instability (e.g., KH instability) outside the mag-
netosphere. The magnetopause boundary could be much
more deformed by this external instability if the total
pressure gradient of the magnetospheric plasma is insignif-
icant. The RAs are thought to arise from a waveshaped
inner edge of an LLBL which may be newly formed by
sheath plasma entry across the deformed magnetopause.

5.2. Diffuse Auroral Undulation

[39] According to the simulation model by Yamamoto et
al. [1993, 1994], some type of the large-amplitude undula-
tion (referred to as the giant undulation in their papers) [e.g.,
Lui et al., 1982; Zhang et al., 2005] on the equatorward
diffuse auroral boundary is assumed to be a result of spatial
modulation of the energetic protons by KH waves arising
from the polarized arc sheet. The arc sheet is defined as the
azimuthally aligned sheet of enhanced density, a product of
particle supply from the ionosphere. The polarization is due
to anomalous cross-field diffusion of protons in the arc
sheet. Here the possibility of the generation of those KH
waves is reexamined in the context of the hybrid KH/RT
stability with inertial relaxation effect.
[40] The growth rate of a most unstable KH wave in the

polarized arc sheet is expressed as gKH � DV/l, which is
derived from the linear analysis of the KH instability by

Figure 6. Schematics illustrating possible formations of
(a) bright spots (BSs) and (b) radially aligned arcs (RAs).
(a) The LLBL inner boundary (striped in red) is slightly
modulated under the influence of external waves (not
shown). Space charges induced by the magnetic drifts of the
LLBL particles, in the region of pressure gradient, can be
responsible for the formation of BSs, and at the same time
the resulting E � B drift motion acts to suppress the
boundary modulation. The figure is for dusk side. (b) The
magnetopause boundary deformation can significantly
proceed in a situation that the pressure gradient of the
magnetospheric plasma is insignificant. Then an LLBL
(striped in red) with a waveshaped boundary is newly
created by sheath plasma entry, providing space charges
responsible for the RAs. The resulting E � B drift motion
also acts to suppress the deformation.
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Ganguli et al. [1988]. The formula for gKH in equation (39)
is not applicable to the present case, because velocity shears
arise in a triple layer of space charges, not in a single charge
layer assumed in section 4. For wavelength of l ^ 100 km
and flow velocity with DV � 1 km/s, gKH is estimated as
gKH � 0.01 � (100/l) s�1. For evaluating gRT, the parameter
values are chosen as follows. A typical value of the average
magnetic drift speed of the arc sheet protons with w �
200 eV, wnm is �4 m/s at subauroral latitudes, a value based
on the dipole field [see Yamamoto et al., 1991, Figure 6];
the number density of the arc sheet particles, n is 20 cm�3

[see Yamamoto et al., 1993, section 6] when they are
contained in a flux tube at subauroral latitudes, where RB

� 0.1RB,0, so that the flux tube content there is given by N =
nBiRB �2.64 � 1016m�2. For SP � 0.5 mho and l ^
100 km, gRT is estimated as gRT � ±0.018 � (100/l) s�1,
where plus and minus signs are for the poleward and
equatorward sides of the arc sheet, being unstable and stable
to the RT instability, respectively.

[41] Considering the aforementioned density enhance-
ment in the arc sheet, from Figures 1a–1c the capacitance
Cm is found to be �2 F at subauroral latitudes, if the arc
sheet is constituted by an H+ plasma. For an O+ plasma, Cm

� 32 F. The inertial relaxation rate n is then in the range
between �0.016 and �0.25 s�1. Thus ~gKH and ~gRT are
found to be 0.04 � (100/l) ] ~gKH ] 0.64 � (100/l) and
0.07 � (100/l) ] j~gRTj ] 1.2 � (100/l), respectively. The
polarized arc sheet will be KH stable because of n > gKH,
but not ruling out the possibility that a strong shear of
gKH � 0.1 s�1 leads to the excitation of a KH instability.
On the contrary, a KH/RT hybrid wave is more likely to
grow, on the poleward side of the arc sheet, with a growth
rate comparable to gRT, reflecting the characteristics of the
hybrid growth rate for ~gKH < 1 as shown in Figure 4 or
Figure 5b. It is then suggested that the hybrid KH/RT
instability, rather than the KH instability, plays an important
role in the modulation of energetic protons, leading to the

Figure 7. Model for the temporal/spatial development of RAs in the equatorial plane (top) and
ionospheric plane (bottom). They are adapted from Figures 4 and 10b of Yamamoto and Ozaki [2005]; the
dawn side is chosen for comparison with Figure 3 of Elphinstone et al. [1991]. Point Pe in the equatorial
plane is mapped to Pi in the ionospheric plane.
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formation of some type of the large-amplitude undulation on
the equatorward diffuse auroral boundary.

6. Conclusions

[42] A linear analysis of the hybrid KH/RT instability is
conducted for an electrostatic magnetosphere-ionosphere
coupling system. For reassessment of the KH stability, the
inertial capacitance Cm in the magnetosphere is evaluated
using the Tsyganenko model, under the conservation of a
flux tube content. On the basis of the calculated profile of
Cm, the following facts are identified. So far as long
wavelength (^100 km) perturbations are concerned, the
main body of the plasma sheet is KH stable because the
inertial relaxation rate is greater than the shear frequency.
On the contrary, the hybrid KH/RT instability can occur at
places where the energy density of plasma sheet particles
has an inward gradient. As for the inner boundary of the
low-latitude boundary layer, it is found stable to the hybrid
instability when the outward pressure gradient of the LLBL
particles dominates the inward one of the plasma sheet
particles. In this situation the bright spots can be produced
by the magnetic-drift-induced charge separation on the
LLBL inner boundary, if the boundary is slightly perturbed
externally, i.e., by some instability outside the magneto-
sphere, not by KH waves inside it. Under the conditions that
the total pressure of the magnetospheric plasma is insignif-
icant, the magnetopause boundary can be more readily
deformed by the external instability. In this situation, the
RAs are likely to appear as the ionospheric projection of the
waveshaped inner edge of an LLBL which is newly created
by sheath plasma entry across the deformed magnetopause.
In addition, it is suggested that the hybrid KH/RT instability
may be responsible for some type of the large-amplitude
undulation as is occasionally observed on the equatorward
boundary of a diffuse aurora.

Appendix A

[43] The conditions for the approximations used in the
derivation of the dispersion relation of (41), in sections 2
through 4, are discussed in the following items 1–3.
[44] 1. Because the ionospheric field Bi is well approx-

imated by the dipole field, dBi/REdq ’ (Bi/RE)3 sin q cos
q/(1 + 3 sin2 q), whereq is the latitude. In the auroral zonedBi/
REdq� (1/3)(Bi/RE), meaning that the scale length for r?Bi

is �3RE. On the other hand, div VE ’ �2VE � rBi/Bi and
div nm ’ �2nm � rBi/Bi are derived using rotE = 0
and rotBi = 0 in the ionospheric plane. Hence div NPVE =
Npdiv VE + VE �rNp ’ �2NpVE � rBi/Bi + VE � rNp

and div wNPnm = wNpdiv nm + nm � r(wNp) ’ �2wNpnm �
rBi/Bi + nm � r(wNp). It is immediately found that on the
right-hand side of each of these two equations, the first
term is negligible compared with the second term for any
type of auroral disturbance. This fact assures the derivation
of equation (13). Thus the expressions of div VE = 0 and
div nm = 0 are allowed in a practical sense.
[45] 2. The ratio of jGin

p j/jGE
pj is reduced to jCmdE/

dtj/jeNpVEj, using equation (16). It is then estimated
as jGin

p j/jGE
pj < 4 � 10�4Cm(F) for d/dt < 10�2 s�1 andNp^

1016 m�2 (see section 4). Therefore in the adiabatic region

of the PS (see Figures 1a–1c), Gin
p may be neglected in

the derivation of equation (13). For the LLBL with d/dt <
10�2 s�1 and N � 4 � 1017 m�2 (section 5.1), jGin

p j/jGE
pj <

10�5Cm(F). Hence in most part of the LLBL region (see
Figure 2a), Gin

p may be neglected compared with GE
p .

[46] 3. The diffusion rate (D/w) will be governed by the
intensity level of wave turbulence such as the Alfvén wave
noise [e.g., Lundin et al., 1990] and the broadband electro-
static noise [e.g., Gurnett and Frank, 1977; Matsumoto et
al., 1994], which are assumed responsible for anomalous
cross-field diffusion of aurora protons [Yamamoto et al.,
1997b]. Because of scarcity of satellite data on such wave
turbulence, it is extremely difficult to infer the latitudinal/
longitudinal distribution of the diffusion rate averaged over
a whole flux tube. Also, in regions relatively near the open/
closed boundary, the scale length for the latitudinal variation
of RB

2/3 may be comparable to the wavelength under study.
Hence this variation cannot always be neglected in the
derivation of equation (15). Keeping these limitations of
the analysis in mind, the diffusion effect in a simplest form
is taken up by assuming a ‘‘uniform background medium’’.

Appendix B

[47] The dispersion relation for the RT mode instability
without inertial effect is derived for the energy density
profile with a finite gradient in latitude. The differential
equation suited for the RT mode is written as

d2df xð Þ
dx2

¼ k2y 1� gm xð Þ
g þ D k2y � dE* 0 0 xð Þ=dE* xð Þ

� �
8<
:

9=
;df xð Þ;

ðB1Þ

which is obtained by substituting equation (25) into
equation (26) and taking w = kyVt + ig under the assumption
of Vt = const, where the diffusion term is retained in
equation (25) and the terms containing n on the left-hand
side of equation (26) are only retained in the limit of Cm !
0. Consider a two-dimensional system in the x-y plane:
gm(x), i.e., �(enm/BiSPRB

2/3)E*00(x) has a constant value of
gm,0 (>0) inside the strip of jxj < L/2 and vanishes outside it,
namely, E*0(x) has a constant gradient (E*00 (x) < 0) only in the
strip. In addition, D is assumed constant there.
[48] If dE*(x) is proportional to cos kxx or sin kxx in the

range of jxj < L/2, equation (B1) has the same type of
solution, i.e., df(x) / cos kxx or sin kxx, because the
quantity in the curly bracket on its right-hand side is
constant there. Here note that the solution of df0(x) / sin
kxx may be inappropriate because normally such an anti-
symmetric (with respect to x = 0) potential is not seen in
numerical simulations of the RT instability. Thus df(x) /
cos kxx. Equation (26) without inertial terms then requires
that dE*(x) / cos kxx. Now, equation (B1) takes the
following forms inside and outside of the strip of jxj < L/2:

d2df xð Þ
dx2

¼ k2y 1�
gm;0

g þ D k2y þ k2x

� �
8<
:

9=
;df xð Þ ðB2Þ
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and

d2df xð Þ
dx2

¼ k2y df xð Þ; ðB3Þ

respectively. The solutions to equations (B2) and (B3) are
expressed as df(x) = a0 cos kxx and df(x) = a1 exp(�kyjxj),
respectively. From equation (B2), the growth rate g is
related to the wave numbers kx and ky as

g ¼ gm;0
k2y

k2x þ k2y
� D k2x þ k2y

� �
: ðB4Þ

The requirement that df(x) and its derivative with respect to
x be continuous at L/2 and �L/2 gives the following relation
between kx and ky:

ky ¼ kx tan kxL=2ð Þ: ðB5Þ

For a given ky (>0), an infinite number of kx (>0) are
determined as the solutions of the above equation. They are

labeled as kx
1, kx

2, . . ., kx
n, . . ., i.e., (n� 1)p < kx

nL/2 < (n� 1/2)p.
From the kx dependence of g in equation (B4), the growth rate
is found to be smaller for a higher harmonic number n. For
this reason, hereafter the analysis is limited to the
fundamental mode with n = 1.
[49] The perturbation profile of dE* in the range of jxj <

L/2 is now written as

dE* ¼ �a0
R
2=3
B SP

e nm

k2x þ k2y

ky
exp gt cos kxx sin ky y� Vttð Þ; ðB6Þ

and dE* = 0 for jxj > L/2, which are obtained from
equation (26). In comparison with df = a0 exp g t cos kxx
cos ky (y � Vtt), dE* has a phase difference of p/2 in the
y-direction so that a (positive) peak of df lies at a point
where �@dE*/@y maximizes, the same way as predicted
from the associated charge separation.
[50] Equation (B4) is rewritten in terms of the nondimen-

sional wave numbers ~kx and ~ky which are defined as ~kx =
kxL and ~ky = kyL, respectively:

g
gm;0

¼
~k2y

~k2x þ ~k2y
� aDB

L2gm;0
~k2x þ ~k2y

� �
; ðB7Þ

where DB is the Bohm diffusion rate at the ionospheric
height, i.e., (2w/3)/16eBi; the diffusion rate for the iono-
spheric projections of protons in the magnetosphere may be
scaled in terms of DB, i.e., D = aDB for a ] 1 (see
Appendix C of YI04). Taking w = 8 keV, L = 100 km, and
SP = 8 mho, as well as the same values of parameters Bi, N,
and wnm as used in the evaluation of gRT (section 4), gm,0,
i.e., (e/BiSP) (wnmN/L) is estimated as �1.8 � 10�2 s�1 and
DB/L

2gm,0 is �3.2 � 10�2. Figure B1a illustrates the growth
rates g for various values of a as functions of ~ky, using the
relation of (B5) between ~kx and ~ky, which is also plotted in
Figure B1b. The growth rate for a given diffusion rate
maximizes at a certain value of the azimuthal wavelength
(lmax), which depends on the diffusion rate. If the width L is
changed while the other parameter values are fixed, the
maximum growth rate can be estimated as a function of L,
which is shown in Figure B2a. The wavelength lmax

corresponding to the maximum growth is shown in
Figure B2b. All the curves are truncated at L = 25 km
because the drift approximation used in the present analysis
requires that the scale length L should be much greater than
the ion cyclotron radius (a few kilometers) projected to the
ionosphere. Note that the RT instability is suppressed for a
short wavelength perturbation by the finite cyclotron radius
effect of ions [Lehnert, 1961; Roberts and Taylor, 1962;
Huba, 1996b].
[51] Figure B1a indicates that the cross-field diffusion of

particles acts to suppress the wave growth particularly when
the (azimuthal) wavelengths are sufficiently short. (Note
that kx increases with ky.) This fact can be physically
understood by noting that the particle diffusion tends to
smooth out energy density perturbations. In this context,
recall the previous theoretical predictions that owing to the
low-frequency wave turbulence such as the broadband
electrostatic noise and the Alfvén wave noise, the anoma-
lous cross-field diffusion coefficient averaged over a flux
tube, for plasma sheet protons, is likely to reach a signif-
icant fraction of the Bohm rate at least in disturbed periods

Figure B1. (a) Growth rate of the RT instability: g/gm,0 is
plotted against the azimuthal wave number ~ky = kyL, for
various values of a representing different levels of
anomalous cross-field diffusion of protons, i.e., D = DB,
DB/2, DB/4 and DB/8, where the scale length L is taken to be
100 km and gm,0 is the maximum growth rate which is
attained as ~ky approaches infinity in the case of no diffusion
effect. (b) Relation of (B5) between ~kx and ~ky.
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[Yamamoto et al., 1997b] and that charge separation in-
duced by such diffusion may be responsible for the gener-
ation of region 0 FACs near the poleward edge of the
auroral oval [YI04].
[52] In summary, auroral disturbances with a typical

wavelength of a few hundred kilometers are likely to grow
by the RT instability at the places of inward energy density
gradient in the plasma sheet, when the cross-field diffusion
rate of protons is a significant fraction of the Bohm rate. An
additional condition for the emergence of visible disturban-
ces is that the growth time of the RT instability is shorter
than the time required for particles, with a radial drift
velocity of �0.1 km/s, to transit over the unstable region
of �100 km in width, that is a time of �103 s, provided that
the unstable region is standing.

Appendix C

[53] A brief comparison is made between the present
work and that by Keskinen et al. [1988] in the evaluation
of a growth rate of the KH instability in the M-I coupling
system. They assumed an equilibrium configuration
throughout the ionosphere and the magnetosphere as fol-
lows: The Pedersen conductivity SP and the inertial capac-
itance Cm are both proportional to the field-line-integrated

density N, defined as
R
ndz, implying that the average

density in the magnetosphere is roughly proportional to
the ionospheric one. The E � B drift velocity, V has only a
longitudinal (y-)component which varies with x as Vy(x) =
�V0 tanh (x/L), where the coordinates x and y are reverse to
those in their paper. There is no polarization current because
the gradient of Ex is perpendicular to V. In this configuration
the divergence of the Pedersen current is required to be
zero:

divSP E þ Vn�Bð Þ ¼ 0; ðC1Þ

where Vn is the neutral wind velocity. Under the assumption
that the neutral wind has only a constant y-component Vn,
from the above equation the profile of N(x) is derived as

N xð Þ ¼ N �1ð Þ V0 � Vnð Þ
�V0 tanh x=Lð Þ � Vn

ðC2Þ

so that

V0 ¼ �Vn

Nmax � Nmin

Nmax þ Nmin

; ðC3Þ

where Nmax and Nmin denote the maximum and minimum
values of N(x), i.e., N(1) and N(�1), respectively, for the
case of V0 > 0 and Vn < 0 as assumed in that paper. Note that
the existence of a sheared plasma flow as well as its
magnitude entirely depend on the neutral wind velocity and
the gradient of the integrated density, and that the plasma
flow speed is limited to the neutral wind speed. These
features are unusual from a viewpoint that the large-scale
plasma flows are primarily controlled by charge separation
processes in the magnetosphere, which are manifested by
the appearance of FACs.
[54] On the contrary, the present paper assumes an

equilibrium state of the M-I coupling system such that the
magnetospheric charge separation producing large-scale
FACs is short-circuited by the ionospheric Pedersen current.
Specifically, the equilibrium state for the magnetic-drift-
induced FACs is described as

divSPE ¼ �e R
�2=3
B nm � rE*0: ðC4Þ

Large-scale FACs, typically the region 1/region 2 FACs, are
generated owing to a (small) y-component of rE*0 as
studied by YI04. In the present work the KH stability is
studied under the condition of (C4), free of the severe
constraint of (C2) or (C3).
[55] Parameter values that were used in applying the

stability criteria to the actual auroral phenomena in the
plasma sheet [Keskinen et al., 1988, section 6] need to be
reassessed. For the evaluation of the inertial capacitance Cm,
the same number density of 1 cm�3 was assumed both for
the outer and inner plasma sheets. This choice may lead to
overestimate of Cm, say 600 F, in the outer plasma sheet,
because the local density is decreased in a flux tube of
greater volume under the conservation of a flux tube content
in the convective transport. A more reasonable estimate of
CM using that conservation law in the Tsyganenko model
field [Tsyganenko, 1989] is shown in Figures 1a–1c. In the

Figure B2. (a) Maximum growth rates of the RT instability
are plotted as functions of L (in km), for various values of
a. (b) Wavelength lmax (in km) corresponding to the
maximum growth.
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outer plasma sheet, except for nonadiabatic regions
[Büchner and Zelenyi, 1989] with B < 1 nT in the tail
current sheet, normally Cm will be less than 100 F.
[56] The shear frequency V0/L can be estimated, without

specifying values of V0 and L, for any auroral structure
associated with an intense large-scale upward FAC, provided
that SP is uniform. Suppose that an FAC with average
current density Jk flows out of a longitudinally extended
zone in the ionospheric plane. From the integration of
equation (20) along a meridian, the shear frequency at the
ionospheric height is expressed as Jk/BiSP, independently of
a latitudinal thickness of the current zone. (In the nighttime
plasma sheet, the shear frequency at high altitudes is smaller
than the ionospheric one because of anisotropy of the field-
line mapping with a greater factor in radial dimension.) The
current density Jk from a high-altitude electron population
with density n and thermal energy Kth is related to the
associated field-aligned potential drop, Df, as Jk = KDf
[Knight, 1973], under the conditions 1 � eDf/Kth � Bi/Ba,
where K = e2n/(2pmeKth)

1/2, me is the electron mass, and Ba

is the magnetic field strength at the top of the field-aligned
acceleration region. Under the same conditions the
precipitating electron energy flux �k is expressed as �k =
KDf2 [Lundin and Sandahl, 1978]. The conductivity SP

varies with �k as SP (mho) = 0.5 + 160 �k
1/2 [Harel et al.,

1981]. From combination of these three relations, the shear
frequency is expressed as V0/L = K1/2/160Bi = 1.7 �
10�2n1/2 Kth

�1/4, where the first term in the expression of SP

is neglected, n is in units of per cubic centimeter, and Kth in
electron volt. Interestingly, the shear frequency under the
above conditions only depends on the properties of pre-
accelerated electrons carrying a current. Its typical value is
3.8 � 10�3 s�1 assuming n = 1 cm�3 and Kth = 400 eV
[Lyons, 1981]. On the other hand, the inertial relaxation rate
n is greater than �0.08 in the main body of the PS with
Cm < 50 F and SP > 4 mho. Then, as already stated in
section 4, large-scale auroral structures there are normally
stable to the KH instability because n > V0/L. This
conclusion is in contrast with the suggestion by Keskinen
et al. [1988] that the outer plasma sheet is likely to be
unstable to the KH instability.
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