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It is suggested that an MHD instability termed the "shear flow-ballooning instability," which unifies 
both the Kelvin-Helmholtz and the interchange ("ballooning") instabilities, can excite hydromagnetic 
waves in the inner magnetosphere. The stability analysis resembles studies of hydrodynamic flows, where 
the stabilizing factor is the gravitational buoyancy represented by the Brunt-V/iis/il/i (or Rayleigh-Taylor) 
frequency fig(r). Here the "magnetic buoyancy" due to the curvature of the field lines replaces the 
gravitational buoyancy and allows the derivation of the MHD analogue to f•g(r). Stability is then found 
to depend on a dimensionless quantity termed the magnetic Richardson number (similar to hy- 
drodynamic) Ri = [f•g2(r) + kl12Ca2](1 + kl12/k12)/(dV•,/dr) 2, representing the relative importance of 
gravitational, thermal, rotational, magnetic, and shear flow effects. Unstable MHD modes are found to 
be represented by Alfv6n drift waves which are the hydromagnetic, and shear flow effects. Unstable 
MHD modes are found to be represented by Alfv6n drift waves which are the hydromagnetic analogue to 
hydrodynamic gravity waves and like them are trapped in the shear zone. The study is applied to the 
plasmapause boundary, and the results indicate that low-frequency hydromagnetic pulsations (Pc 4-Pc 5) 
with typical wave periods between 123 and 428 s and wavelengths in the range of 5 x 10 3 to 17.2 x 10 3 
km can be excited in such a region. The analysis can be extended to other shear flow boundaries such as 
the magnetopause. 

1. INTRODUCTION 

Considerable observational evidence exists which indicates 

that low-frequency hydromagnetic waves occur in the inner 
magnetosphere in association with geomagnetic storms [e.g., 
Barfield and Coleman, 1970; Barfield and McPherron, 1972; 
Barfield et al., 1972; Dwarkin et al., 1971; Lanzerotti et al., 
1974, 1975; Lanzerotti and Fukunishi, 1975; Lanzerotti and 
Maclennan, 1976]. Further evidence indicates that some of 
these fluctuations are associated with the outer regions of the 
plasmasphere (i.e., the plasmapause) where plasma elements 
are peeled off during periods of enhanced geomagnetic ac- 
tivity, particularly at the dusk sector [e.g., Kikuchi, 1971, 
1976; Kivelson, 1976; Lanzerotti et al., 1974, 1975; Lanzerotti 
and Fukunishi, 1975; Lanzerotti and Maclennan, 1976]. 
Various mechanisms have been suggested to explain the exci- 
tation of these hydromagnetic fluctuations. Among them the 
gradient drift and the Kelvin-Helmholtz (K-H) instabilities 
have emerged as the most probable sources for hydromagnetic 
waves in the magnetosphere (see reviews by Lanzerotti and 
Southwood [1979] and Southwood and Hughes [1983]). 

The study of low-frequency gradient drift waves at the plas- 
mapause has previously been investigated by Kikuchi [1971, 
1976], Hasegawa [19713, Hasegawa and Chen [1974-1, Patel 
[1978], Migliuolo and Patel [19813, Migliuolo [19833, and 
Southwood and Hughes [19833, among others. Owing to the 
substantial inhomogeneities in density and temperature (i.e., 
sharp gradients) at the plasmapause and to the presence of hot 
particles, hydromagnetic drift waves of internal origin can be 
excited as a consequence of the particle drift motion in a 
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magnetic field. These waves can propagate across the mag- 
netic field and can couple on resonant field lines to yield shear 
Alfv•n waves. Because of the presence of hot particles from the 
plasma sheet, the plasma pressure can sometimes be com- 
parable to the magnetic pressure at the plasmapause, particu- 
larly during geomagnetic storms. This is an important effect, 
because it suggests that the plasma internal energy is likely to 
be a source of wave energy and that variations in the internal 
energy of the plasma can be associated with similar variations 
in the magnetic field, suggesting the compressive nature of the 
fluctuations. Owing to the presence of these hot particles an 
MHD ballooning or interchange instability can occur at the 
plasmapause. This instability, which is driven by variations in 
the thermal energy of the plasma in an unfavorable magnetic 
field curvature, has been previously investigated in both the 
space and plasma physics context by Gold [1959], Sonnerup 
and Laird [1963], Chang et al. [1965], Liu [1970], Richmond 
[1973], and Coppi et al. [1979], among others. A somewhat 
different approach to the interchange instability at the plasma- 
pause has been investigated by Lernaire [1974, 1975, 1976] 
and Lernaire and Kowalkowski [1981]. They have suggested 
that the formation of the plasmapause is caused by a 
centrifugally-gravitationally driven interchange mechanism, 
although no indication of the type of wave modes excited is 
presented in their discussion. 

On the other hand, the theory of the K-H shear flow insta- 
bility has been intensively investigated by Fejer [1964], Sen 
[1964], Southwood [1968], Gerwin [1968], Ong and Roderick 
[1972], and Miura and Pritchett [1982], among others. How- 
ever, most of the application of this instability to space plasma 
physics has been directed to the study of the stability of the 
magnetopause boundary, and very little has been done with 
respect to the plasmapause boundary. This instability is driven 
by the relative streaming of the plasma flow (i.e., velocity 
shear) where perturbations can grow at the expense of the 
kinetic energy of the flow, resulting in turbulence and mixing. 
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Observations of the high electric field at low ionospheric alti- 
tudes at the edge of the diffuse aurora on field lines that map 
in the vicinity of the plasmapause suggest the presence of large 
electric (or velocity) shears during periods of enhanced activity 
[Smiddy et al., 1977; Maynard, 1978; Rich et al., 1980]. Such 
spatial variation in the electric field has been previously sug- 
gested by Chappell [1974] from plasma observations of de- 
tached regions during magnetically disturbed periods. 

The purpose of this paper is to present a unified linear 
electromagnetic analysis of both the K-H (shear flow) insta- 
bility and the ballooning (interchange) instability based on 
MHD theory. We extended the concepts of the Richardson 
instability of hydrodynamic flows into the hydromagnetic con- 
text by unifying both the shear flow K-H instability and the 
ballooning instability. An essential concept of this analysis is 
the role played by the magnetic buoyancy due to an effective 
gravity produced by the curvature of the field lines which 
provides the basic step by which both instabilities could be 
coupled. By virtue of the concept of magnetic buoyancy one 
can demonstrate from purely dynamical principles the cri- 
terion of instability of ballooning modes in a dipole field. In 
the past this condition has always been derived from energy 
principles. Although energy considerations give accurate 
global instability criteria, information associated with hy- 
dromagnetic waves and their properties cannot be obtained 
from this kind of approach. We will then apply the results of 
this analysis to the plasmapause to explain the excitation of 
hydromagnetic waves in that region, including the effect of the 
hot particles from the plasma sheet. 

This unified treatment of the K-H and ballooning instabil- 
ities rests on a series of physical assumptions: (1) our analysis 
does not consider the "line-tying" effect at the foot of the field 
lines due to a finite conductor (such as the ionosphere) which 
would tend to stabilize the interchange mode; (2) since the 
analysis is based upon the MHD theory, kinetic effects are not 
included; (3) we neglect effects due to pressure anisotropy; and 
(4) the frozen-in law is assumed. Chang et al. [1965], Liu 
[1970], and Richmond [1973] have previously included the 
line-tying effect in addition to the hot particle effects; however, 
their analysis is limited to the study of electrostatic low- 
frequency modes, and the shear flow effect has not been in- 
cluded. On the other hand, Patel [1978], Migliuolo and Patel 
[1981], and Migliuolo [1983] have studied the electro- 
magnetic modes, including the hot particle effects from a ki- 
netic treatment but neglecting both the line-tying and the 
shear flow effects. 

This paper is organized in the following manner. Section 2 
presents a derivation of the general hydromagnetic wave equa- 
tion from the MHD theory. A local analysis of waves propa- 
gating parallel and perpendicular to the magnetic field is pre- 
sented in section 3. In section 4 we investigate the wave equa- 
tion and the dispersion relation of hydromagnetic waves for a 
nonuniform linear plasma model. The application to the plas- 
mapause boundary of the theoretical and numerical results of 
the dispersion relation for a nonuniform linear model is pre- 
sented in section 5. Finally, a summary and conclusions of the 
results obtained are presented in section 6. 

2. MATHEMATICAL FORMULATION OF THE WAVE 

EQUATION 

To investigate the stability of hydromagnetic fluctuations, 
we derive the general wave equation for small-amplitude per- 
turbations from the MHD equations in a spherical coordinate 
system (r, 0, •b) as shown in Figure 1. The basic MHD conser- 
vation equations governing the motion of the plasma, when all 

transport processes (viscosity, resistivity, thermal diffusivity, 
etc.) are neglected, are given by 

DV 

Dt 
= -VP + J x B + p[g- gl• x (gl• x r) - 2V x gl•] 

(1) 

c•p 
-- + v. (pV) = o (2) 
c•t 

t•B 

V xE- t•t V xB=#oJ V.B=0 (3) 
D 

D'-• (P/P•) = 0 y = 5/3 (4) 
-v x B (5) 

where we define D/Dt = 3/3t + V. V as the convective deriva- 
tive and where p denotes the plasma density, V is the convec- 
tive Eulerian velocity vector, B is the magnetic field, E is the 
electric field, J is the current density, g is the gravitational 
acceleration, gl e is the earth angular velocity, P is the thermal 
pressure (assumed to be a scalar in this paper), and/t o is the 
magnetic permeability. 

For simplicity we assumed a plasmapause model repre- 
sented by a spherical thin shell of radius r, where the mag- 
netofluid properties vary linearly as a function of radial dis- 
tance as shown in Figure 1. Furthermore, the magnetofluid 
properties at both sides of the transition zone representing the 
plasmapause are assumed to be constant. It is also assumed 
that the region inside the thin shell (i.e., the plasmasphere) is 
corotating with angular velocity tie about the z axis and that 
the magnetic field can be represented by the dipole field B(r, 0) 
whose axis is aligned with the rotation axis. The determi- 
nation of the wave equation for the hydromagnetic fluctu- 
ations at this transition zone rests on two assumptions: (1) the 
wavelengths of the disturbances under consideration are larger 
than the local ion Larmor radius but short in comparison to 
the curvature of the field lines at the boundary position; and 
(2) the ratio of the variation thickness of the magnetofluid 
properties to the radial distance of the boundary is very small. 
The first assumption represents a "weak curvature" condition 
and is only valid at low latitudes where Bs(r, O) >> B,(r, O) for a 
dipole field. The second condition is denoted as the "narrow 
gap" approximation [Acheson, 1973; Acheson and Gibbons, 
1978; Howard and Gupta, 1962]. 

Pl ASMA '• • • 

x 

PLASMAPAUSE 

To(r) 

V•(r) 

PLASMASHEET 

no(r) 

Fig. 1. Schematic of the coordinate system and the velocity pro- 
file used in the calculations. The r component is the direction of the 
inhomogeneity. The total velocity jump is Uo, and the scale length of 
the velocity shear is A. 
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The linear equilibrium magnetofluid variables at low lati- 
tudes in the equatorial plane are assumed to depend only on 
the radial distance, so that Po--po(r) and Po--Po(r). The 
equilibrium flow velocity model Vo -- F,(r)•, assumes that the 
plasma inside and outside the boundary convects in the longi- 
tudinal direction, tangential to the boundary. The magnetic 
field at low latitudes is given by Bo -- -Bdr)•o, and the angu- 
lar velocity is chosen to be 11e--fle•,. The equilibrium con- 
dition for these model parameters is obtained from the radial 
component of the momentum equation (1) as 

2tto I 
(6) 

where g, = g- [V,(r) + fl,r]2/r is an effective gravity due to 
inertial forces in a rotating frame and where Co(r) = 
B•(r)/(Po#o) •/2 is the Alfv6n speed. Equation (6) shows the bal- 
ance between the total ambient pressure forces (thermal plus 
magnetic) and the buoyancy forces. Note that the second term 
on the right-hand side of (6) gives an apparent gravity due to 
the curvature of the magnetic field lines, giving rise to an 
additional buoyancy force. 

The linearized wave equation is obtained from (1)-(5), to- 
gether with the equilibrium magnetofluid variables assuming 
perturbations about the equilibrium state of the form f(r) exp 
(-icot + imO +inc)). Variables with a tilde represent the fluc- 
tuating amplitudes. For the sake of simplicity the details of 
this derivation are presented in the appendix. However, to 
summarize the results, the final solution of the linearized wave 
equation is given by a coupled system of first-order differential 
equations of the form 

OJ•(r)_ A(r)g(r) (7) 
Or 

where the vector •(r) gives the amplitude fluctuation defined 
by 

for which P, and •, are defined as follows' P,(r)--P(r) 
+ Bo(r)l•o(r)/#o and • = i•,(r)/f•(r)(f•(r)= co- k, Ve(r)is the 

Doppler-shifted frequency), representing the total pressure 
fluctuation and the radial displacement of a fluid element, 
respectively. In (7) we have also defined the two-by-two cou- 
pling matrix A, whose elements are given by 

a•(r) = -[ f12(•7• + 2Ca2/r)- 2kø2Ca2Cs2/r (Ca 2 q- Cs2)•'•m 2 

2f•k•(V, + f•.r)] - •-•o5 (9a) 

po{ al2(r) = • •'•a 2 -- •"•r 2 q- ae • -- 01npo ( 2Ca2 •"• 2 ) Or •7e + - 

. y_•h•(r) O ln Po ( 2_•) [ Or •,- h2(r) 0 In Bo h3(r).]• Or h2(r)r_l j 

(9b) 

r2 [ fP ko 2 + k•, 2] = + ,j (9c) 
a22(r) = --a•(r) (9d) 

To simplify the tedious algebraic manipulation, we have also 

defined the following quantities' 

fla 2 
hi(r) = •.2 (1 + Co2/Cs2) -• 

h2(r)=Cø2 [ 1 Cø2 f12 Cs • Cs 2 •.•m 2 (1 q- Ca2/Cs2) - 1 

h3{r,: Ca-•2 [1-( fie -- 2k02C'2') C• (1 + C•2/C, 2, -'] C•2 fl•2 C•2 

•a2 • •2 __ •2Ca2 •m2 • •2 _ •2Ca2C•2 
(C• 2 + C• 2) 

•r 2 4•e2• 2 4•e •2 V• 

The quantities k, = mir and k• = n/r represent the latitudinal 
(parallel) and longitudinal (perpendicular) wave vector compo- 
nents, respectively. Similarly, we define C•(r)=[yPo(r)/ 
po(r)] TM as the sound speed. 

This final set of first-order coupled differential equations for 
the amplitude fluctuations forms the basic system of equations 
that will be our stgrting point for investigating the stability of 
hydromagnetic fluctuations. 

3. LOCAL ANALYSIS OF WAVE MODES 

IN A QUASI-UNIFORM MEDI• 

In this section we shall present an analysis of those modes 
that propagate strictly parallel (i.e., kll = k0, k• = 0) and per- 
pendicular (i.e., k• = k•, k, = 0) to the ambient magnetic field 
using the wave equation (7) derived in the previous section. In 
order to make the basic physical phenomena more transpar- 
ent a series of approximations are assumed which are consis- 
tent with the relevant plasma environment at the plasma- 
pause. 

Parallel Modes (k• = O) 
The relevant field-aligned modes will have phase velocities 

in the range of C• < •/kll < C a, since this is a good appro•- 
mation for the plasmapause boundary. In this situation the 
matrix elements (9) of the wave equation (7) redu• to 

a•(r) = -[ w2(ae + 2C•2/r)- 2kll2Ca2Cs2/r] 
Po 

a•e(r ) = • [[w 2 -- k112C•2[- fl•2(r)] (10b) 

) a2•(r ) = PolW2 -- kll2C•21 + Cs -- 'Ca 2 2 -- kll 2 (10c) 
a22(r) = -a•(r) (10• 

where flo2(r) is defined by 

01npo+ (g• + 2C. 2/r) O ln Po 

C• 2 (1 + C•2/C• 2) Or (11) 
which represents a measure of the oscillation rate due to the 
action of restoring forces that act upon a parcel of plasma 
which has been displaced radially by perturbations to a stable 
configuration. The quantity flo(r), known in plasma physics as 
the interchange or Rayleigh-Taylor frequency, is also called 
the magnetic Brunt-V•is•l• (BV) frequency in analogy with its 
hydrodynamic counterpart. 
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For the sake of simplicity in this analysis we modify the 
wave equation (7) to the form 

t• ?(r) t 0 b • (r)) r?r - ba•(r) ; ?(r) (12) 
for which the matrix elements b o are given in terms of (10) by 

b•2(r ) = a•2(r ) exp - [a•(r') -- a22(r')] dr' 

b21(r) = a21(r) exp [all(r') - a22(r')] dr' 

and g(r) is now defined by 

exp - a• •(r') dr' 

2 exp - a22(r') dr' 

This form of the wave equation (12) is very useful in determin- 
ing the propagation properties of field-aligned hydromagnetic 
modes since the determinant of the matrix gives their disper- 
sion relation. Therefore, if the scale of variation of the medium 
properties is small in comparison to the radial wavelength, we 
can assume •(r) of the form exp (ik,r) to determine the disper- 
sion relation 

2 •o2(r) -- 1 + k, 2 = kll '1•2 _ kll2C•2l (C• 2 + C•2)l •2 - kll2C•2l 
(•3) 

To understand the nature of the radial wave number k,, two 
different situations are considered. In the first case we consider 

high-frequency modes such that I• 2 - kll2C•21 >> 1•2(r)l. In 
this case the dispersion relation (13) reduces to 

•2 • (kr2 + kll2•Ca 2 + Cs2) (14) 

Modes represented by this dispersion relation correspond to 
fast magnetoacoustic waves or compressional Alfv6n modes 
(since k, >> kll ) which in this frequency regime are not affected 
by variations in the medium properties. The second situation 
corresponds to low-frequency eigenmodes such that I• 2- 
kll2C•21 << 1•2(r)l. In this case the dispersion relation (13) re- 
duces to 

•2 • kll2Ca2(r) + •o2(r ) (15) 

assuming that k, >> kll. Waves represented by (15) are shear 
Alfv6n waves. An inspection of (15) reveals that these modes 
can become unstable if 

•o2(r) < -kll2Ca2(r) (16) 
This result represents the instability criterion for "ballooning" 
modes, which are fundamentally an interchange mode that is 
driven by the presence of a pressure gradient in an un- 
favorable magnetic field curvature [Gold, 1959; Sonnerup and 
Laird, 1963; Coppi et al., 1979]. Note that for a dipole field 
which varies as r-•, this condition yields 

O In P0 
-r Or > 4y + Ykll2r2(1 + Ca2/Cs 2) (17) 

assuming that g, << 2Ca2/r and 2Cs2/r. Moreover, note that 
the presence of finite parallel wavelength produces stabilizing 

effects on these modes, in agreement with previous results 
[Coppi et al., 1979]. Since the most unstable modes are those 
for which the magnetic field remains unchanged [Gold, 1959; 
Sonnerup and Laird, 1963; Coppi et al., 1979], then kll - 0, and 
the condition (17) can be written as 

_(0 In no O ln Tr0 ) •, a In r + a In > 47 (18) 
assuming that P0 = noK•To and P0 = Mino. Equation (18) is 
consistent with that obtained by Gold [1959] and $onnerup 
and Laird [1963] by means of the energy principle. This con- 
dition means that if the pressure decreases much faster than 
r-% then the system will spontaneously become convectively 
unstable to interchange. 

Perpendicular Modes (ko -- O) 

We now proceed to study the behavior of those modes that 
propagate perpendicular to the magnetic field (i.e., kñ = k,). 
For simplicity, let us neglect those terms associated with rota- 
tional effects, since for the earth's plasmasphere they are very 
small in comparison to the thermal and magnetic effects. 
Therefore, subject to these conditions, the matrix elements (9) 
of the wave equation (7) reduce to 

F(ge + 2Ca2/r) 2kz (V,t ' + tier)] (19a) 
P0 

a•2(r) = 7 (f12 - flø2) (19b) 

[ 1 a2•(r) = -- -- 2) (19c) i'l 

a22(r) = -a•(r) (19d) 

Similarly to the previous section, the dispersion relation of 
these modes can be determined from the determinant of the 

matrix wave equation (7) using (19) and assuming fluctuations 
of the form exp (ik,r). This is valid if the medium properties 
vary smoothly in comparison to the radial wavelength. There- 
fore the dispersion relation results in 

kr2(r) = kz k f12(r) 1 4- (Ca2 4- Cs2) (20) 
Similarly to the parallel mode case, two different limits are 
considered. In the first case we considered high-frequency 
modes such that Ill21 >> Ill021, resulting in the dispersion rela- 
tion 

co - kñ V,t,(r ) 4- [(k, 2 + k_L2XCa 2 q- C, 2)] 1/2 (21) 

Eigenmodes represented by this relation correspond to fast 
magnetoacoustic waves which are nondispersive and propa- 
gate only if the condition Ifl/k•l > (C• 2 + Cs2) x/2 is satisfied. 

The second limit corresponds to low-frequency modes that 
satisfy the condition 1fl21 << 1fl•2(r)l . The dispersion relation 
(20) reduces in this case to 

kñflo(r) 
0.}-- kñ g4•(r ) 4- (kr2 4- kñ2) 1/2 (22) 

Equation (22) gives the propagation properties for Alfv•n drift 
waves which propagate perpendicular to both the magnetic 
field and the gradients. These waves are dispersive and can 
only propagate if the condition Ifl(r)/kñl < (Ca2+ Cs2) 1/2 is 
satisfied. Note also that these modes can be unstable if fl•(r) 
becomes imaginary because of the gradient effects. In this case 
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the growth rate of these modes is given by Im ro- k• Im 
•a/(kr 2 + kñ2) 1/2 

It is interesting to note that these two eigenmodes, i.e., fast 
magnetoacoustic and Alfv6n drift waves, are the hy- 
dromagnetic analogue to sound and gravity waves in hy- 
drodynamic flows, respectively [Miles, 1961, 1963; Howard, 
1961, 1963; Booker and Bretherton, 1967]. Furthermore, it can 
be shown that our problem reduces smoothly to the hy- 
drodynamic case as the magnetic field goes to zero. For this 
reason we have kept the real gravity term ge in the equations 
even when this term is much smaller than the apparent gravity 
due to the curvature of the field lines. 

Although the local analysis of the dispersion relation (22) 
shows some of the important properties of the perpendicular 
modes in a quasi-uniform medium, the effect of the shear flow 
V•,(r) on the stability of these modes is not quite clear from 
these equations. In the next section we investigate the effect of 
the velocity shear on the stability of these modes. We will 

, demonstrate that even when the magnetic BV frequency f•g(r) 
is real, which represents a convectively stable system, Alfv6n 
drift waves can become unstable if the shear flow is large 
enough. 

4. WAVE EQUATION AND DISPERSION RELATION 
FOR A NONUNIFORM PLASMA MODEL 

In the previous sections we presented a local analysis of the 
nature and behavior of parallel and perpendicular modes for a 
quasi-uniform medium. We have shown that the stability of 
parallel modes or shear Alfv6n waves is controlled by the 
nature of the magnetic BV frequency f•o(r) and that the most 
unstable modes are those for which kll = 0. Furthermore, we 
showed that in the case of perpendicular modes, low-frequency 
Alfv6n drift waves such that IFS21 << ICao21 can propagate if the 
condition If•/k•l < (Cs2+ C•2) a/2 is satisfied. In this section 
We investigate theeffects of the shear flow on the stability of 
quasi-perpendicular modes in a nonuniform medium, since for 
parallel modes the flow effects vanish. Similarly to previous 
sections, we will consider that the rotational effects are negligi- 
ble and that the sound velocity is smaller than the A!fv6n 
velocity (which is a good approximation for the plasmapause). 
We further assume that these quasi-perpendicular modes are 
characterized by k_• > kll, since this condition corresponds to 
the Aifv6n drift mode. Subject to these conditions, the matrix 
elements (9) of the general wave equation (7) reduce to 

a,,(r) -- --[_, •? • • -- r(f• 2 _ kll2Co2) 

2kl12Cs2Ca2 - rn(c 2 + (23a) 

PO 2Ca2 a12(r) = • ifS2 __ kl I -- f•#2(r)] (23b) 
r2(kll 2 + kñ 2) 

a2•(r) = po(f12 _ kl12Ca2) (23c) 
a22(r ) -- -a•i(r) (23d) 

where f•o2(r) is defined in (11). To simplify the analysis, we 
transformed the matrix wave equation (7) into a second-order 
differential equation. The final expression gives 

I•"(r) + p(r)I•'(r) + q(r)l•/(r) = 0 (24) 

where the primes indicate derivatives with respect to r and 

where we define 

1 01nfl(r)'• (01_np0.'l-' = ----+2 rp= 

q(r) (k•'2 + kll2)Ef•g2(r) + kl12Ca2] 2) = f•2 --(kñ 2 + kll 
assuming that Ikñ(r - r½)OV,/Orl >> lkllC•l and 10 In po/Orl >> 
IO In Bo/Orl, which are valid approximations at the plasma- 
pause for a dipole magnetic field. Equation (24) is almost iden- 
tical to the hydrodynamic equation for stability of stratified 
flows subject to a uniform vertical downward gravitational 
field [Miles, 1961, 1963; Howard, 1961, 1963]. This equation 
can be studied by techniques similar to those used in the 
problem of hydrodynamical stratified shear flow to investigate 
unstable solutions [Howard, 1961, 1963]. It is possible to find 
unstable solutions even if the system is convectively stable, for 
which f•2(r)> 0. Suppose (24) and the boundary conditions 
have a nontrivial solution I•(r) with Im (C)> 0 (for insta- 
bility), where C is the phase velocity given by C = ro/(k_• 2 + 
kll2) 1/2. Then [V,(r)- C] does not vanish across the shear 
zone between r_ and r+, and we can form a square root 
[V,(r)-C] •/2 which is as smoothly varying as V,(r). We 
assume V,(r) to be continuous and differentiable. Let 

lJ(r) = [V,(r)- C] TM exp [r/(2r,)]I• 
and write (24) in terms of •(r). The result gives 

a-7 (v, - c) +½ 

ß {,(f•o 2 + kl12Ca2X1 + kl12/kñ 2) -- ¬(OV4•/Or) 2 V, - C 

(V,- C)E4(kll 2 + k• 2) + r, -23 
4 

0r 2 
where we have neglected terms related to rotational forces and 
assumed that (2rt,-2) a/2 >> 2/r. Multiplying (25) by •* (where 
the asterisk represents the complex conjugate) and assuming 
that i•(r_) = •r +) = 0, we get 

+(V•- C) •rr + (k•2 + kl12 + r"-2/4)1•1•- dr 

Or 2 r, Or J I•12 dr + ;_ (V,t , -- •, Or / 
] - (flø2 + kl12Ca2X1 + kl12/kñ2) V4• - C dr = 0 

The imaginary part of this equation, if C• = Im (C), gives 

2 - 2 

_ • +(k•2+kll +r.=/4)1•1 dr 

+ (•o 2 + kll 2Ca2•1 + kl12/k• 2) 

4 k, Or ,I J V,- C 
dr =0 
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which is impossible to satisfy if [fla2(r)q-kll2Ca2](1 q- kll2/ 
kñ 2) is everywhere greater than or equal to (•V,t,/•r)2/4. Thus a 
sufficient condition for instability is that 

Ri = [•a2(r) q- kll2Ca2](1 q- kl12/kñ2) 1 
ß (OV+/&)2 < • (26) 

The dimensionless parameter Ri is called the local magnetic 
Richardson number in analogy with hydrodynamic flows. 
Furthermore, we find that unstable modes (i.e., Im (C)> 0) 
satisfy Howard's semicircle theorem [Howard, 1961, 1963]. 
This theorem states that for complex wave speed C such that 
Im (C) > 0 any unstable mode must lie inside a semicircle in 
the upper half C plane which has a range of V+(r) in diameter 
if fla2(r) > 0 [Howard and Gupta, 1962; Howard, 1961, 1963]. 

Two important conclusions are obtained by inspecting the 
magnetic Richardson condition (26). First, note that the inter- 
change instability (i.e., fla 2 < -kl12Ca 2) cannot occur before 
the shear instability since the magnetic Richardson number 
will become smaller than 0.25 even for small shears. Second, 
note that the direction of the velocity flow V+(r) perpendicular 
to the magnetic field is not important, since the gradient term 
appears to the second power in (26). Equation (26) also shows 
the coupling between the parallel shear Alfv•n mode and the 
perpendicular Alfv•n drift mode as well as the stabilizing influ- 
ence of the finite parallel wavelength in agreement with pre- 
vious results. 

Let us now determine the solutions of the wave equation 
(24) inside and outside the shear flow transition zone. As we 
previously mentioned, the plasmasphere model is represented 
by a thin spherical shell at a distance r from the earth's center 
as shown in Figure 1. We assumed the narrow gap approxi- 
mation and considered the scale length of variations of the 
medium properties to be constant across the transition zone. 
For simplicity we also assumed that the medium properties 
inside and outside the layer are constant. Subject to these 
conditions, the solution of the wave equation (24) outside the 
transition region gives 

I•(r) = Bie k' + B2 e-k' (27) 
where k 2 = kñ 2 + kll 2 is the total horizontal wave vector and 
B• and B2 are constants of integration to be determined from 
the boundary conditions. 

To determine the solution of the wave equation in the tran- 
sition layer, we transform (24) by expanding the Doppler- 
shifted frequency fl(r) in a Taylor series around some point r' 
inside the region. This expansion gives 

1 •, (-kñ OV,/Or)-•l .... (28) 
Cl(r) r- r• 

where r• is defined by 
Re f•(r') + iroi 

r e = r' + (29) 
kñ rgV•/rgrl .... 

Finally, we make the substitutions 

I•/(r) = •(r) exp (r/2ro) f = kA # = (¬- Ri) TM (30) 
r • r c 

A/r. (31) •_ (r- re) (4f2 + A2/r. 2)l n • = ( 4f2 + A2/r. 2) in A 

where A is the thickness of the shear flow profile. Therefore 
the wave equation (24) reduces to 

d2•(•) 
d• 2 (0=o (32) 

which is the well-known Whittaker's differential equation. The 
solutions of this equation can be written in terms of the con- 
fluent hypergeometric functions as follows' 

•(0 = CxM•.•(O + C2M•,_•(0 (33) 
where C• and C 2 are integration constants and M•,+,(O is 
given by 

M•,+•,(0 = •(1/2+a)e-U2 1F1(«- o• -{- •, 1 +_ 2#; 0 (34) 
where the function •F•(a, b; •) is the confluent hypergeometric 
function. 

Note that (33) has a branch point at • = 0 (i.e., r = re). This 
occurs when the real part of the Doppler-shifted frequency 
vanishes inside the transition zone. Therefore • = 0 corre- 
sponds to a critical level at which the phase velocity 
couples to the flow velocity V+(rO. Physically, these critical 
levels represent sites Where strong coupling between Alfvfin 
drift waves and the background flowing plasma occurs. These 
singularities have come to be known as critical levels, since as 
the mathematical concept suggests, the wave behavior can be 
rather dramatic [Miles, 1961, 1963; Howard, 1961, 1963; 
Booker and Bretherton, 1967]. Since we are looking for unsta- 
ble modes such that Ci--Im (C)>> 0, then we require the 
eigenfunctions •(0 to be continuous and differentiable across 
the branch point • - 0. Thus, if there exists any unstable solu- 
tion in the upper half C plane, we shall take the path of 
integration below the branch point as we cross it, restricting 
the argument of • according to [Miles, 1961, 1963; Booker and 
Bretherton, 1967] 

-rr < arg (0 < 0 Im (C) > 0 (35) 

With this condition the analytic continuation of (33) around 
the branch point • -- 0 can be determined according to 

M•,+•( 0 = e -i"{•/2+•0M_•,+•(-- 0 (36) 

Once the solution of the wave equation inside and outside the 
transition zone is known, the dispersion relation for a nonuni- 
form medium can be determined using physically reasonable 
boundary conditions. The boundary conditions ,to be met at 
the lower and upper boundaries of the transition layer are the 
continuity of the wave impedance defined by'•= •t/(r2•r); 
however, this condition is equivalent to the continuity of the 
logarithmic derivative of the function Ig'(r). Additional con- 
ditions are applied to (27) in the region above and below the 
transition zone. These conditions assume that the wave is eva- 

nescent in these regions, which is justified by the fact that the 
Doppler-shifted frequency is much greater- than the magnetic 
BV frequency. Therefore by matching the logarithmic deriva- 
tives of the wave solutions at the upper (r+) and lower (r_) 
boundaries of the transition layer, we get the dispe.rsi0n rela- 
tion 

O(•,, •,, f. Ri)=d '• (•+/•_)•'f(•+,/•+, a, #)f(•_,/•_, -a, -#) 

-e-""(•+/•-)-"f(•+,13+,a, -#)f(•-,13-, -a, #)=0 (37) 

where we have defined 

•+ A (l--d) • A • /•+= f+A/r. = 0•r-• - = 0•r-• (4f 2 + AS/r,2) TM 

+Cñ d• ñ,, ñ. (•)1 d• • •=•+ 
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Fig. 2. Instability surfaces representing the plasma medium pa- 
rameters Ri versus the possible unstable normalized wavelengths kA 
at constant normalized growth rate di for perpendicular modes (i.e., 
drift waves). 

O+•.+,(•+) -- e -•/2 ,F,(« • • _ #, 1 _ 2#, •ñ)l•=•ñ 
and • is the normalized complex phase velocity given by 

• = • = •, + i6i (3 = (co, + icoi)A/Uo 
where U0 is the maximum flow velocity. 

Equation (37) together with the condition -•# < arg (• +/ 
•_)•' < 0 can be solved numerically using either a predictor- 
corrector scheme or the Muller method to determine the dis- 

persive properties of the unstable eigenmodes. The results, in a 
parametric form of the dispersion relation (37), are shown in 
Figures 2 and 3. In the calculation of these curves we have 
assumed for simplicity the Boussinesq approximation by set- 
ting • = 0 (i.e., A/r s = 0). The Boussinesq approximation is a 
convenient framework in which to develop concepts which 
depend essentially on the buoyancy forces and their interplay 
with the shear. These concepts may probably be extended into 
a wider context, but for the present time the approximation is 
adopted without comment. Figure 2 shows contour plots of 
the magnetic Richardson number Ri versus the normalized 
wave vector J• = kA for constant values of the normalized 

imaginary Part of the phase velocity (i.e., the growth rate). 
These curves present those regions in the model parameters 
for which instability can be fo•Und. The boundary at which 
di- 0 divides the region of instability, given by di > 0 and 
Ri < 0.25, •rom the stability region given by di < 0 and 
Ri > 0.25. Note that as the magnetic Richardson number Ri 
decreases, the growth rate increases for a fixed wavelength. A 
curious feature in the evaluation of these eigensolutions is that 
all the unstable modes have the same normalized real phase 
velocity (i.e.,• •, = 0.5), which corresponds to the case where 
the critical leyel or singularity is at the center of the velocity 
profile. This feature seems to be due to the symmetry of the 
model profile across the layer and to the symmetry in the 
boundary conditions above and below the transition zone. 

Similarly, Figure 3 shows contour plots of the normalized 
growth rates c5 i -Im (3 versus the normalized wave vector J• 
for constant values of Ri. These curves represent the rate at 

which the instability grows for a particular wavelength and 
plasma model (i.e., magnetic Richardson number). Note again 
that the maximum growth rate occurs at the smallest value of 
Ri for a fixed wavelength. These numerical results are consis- 
tent with the calculations made by Miura and Pritchett 
[1982], although a different procedure was used. Our results 
show not only that modes with kA < 1.28 are unstable but 
also that these modes must satisfy the condition Ri < 0.25. 

5. APPLICATION TO THE PLASMAPAUSE 
BOUNDARY 

We now present the application of the theoretical and nu- 
merical results obtained in the previous sections to the plas- 
mapause transition region. The parametric form of these re- 
sults shown in Figures 2 and 3 allows us to study with great 
flexibility a large variety of physical models of the ambient 
plasma. As we previously stated, the plasma parameters out- 
side and inside the plasmasphere are chosen to be constants, 
while across the transition region they are chosen to vary 
linearly with radial distance. 

The plasma parameters shown in Table 1 and used in our 
calculation are typical of spacecraft measurements across the 
plasmapause. However, in situ electric field measurements and 
their spatial variation are difficult to obtain because of the 
reliability of these measurements in regions where the plasma 
density (temperature) is very low (high), such as outside the 
plasmapause. These values are necessary to determine the 
veiocity shear near the plasmapause. Nonetheless, indirect es- 
timates of such shears can be obtained from low-altitude iono- 

spheric observations at the edge of the diffuse aurora (M. 
Kelley, private communication, 1985). Observations of large 
electric fields in this region have been reported by $rniddy et 
al. [1977], Maynard [1978], and Rich et al. [1980] using 
satellite-borne electric field detectors. Kelly [1986] has used 
these observations to evaluate the velocity shears observed in 
this region in order to explain the observed fluctuations at the 
edge of the diffuse aurora reported by Lui et al. [1982]. These 
ionospheric shear flows can be transformed to the equatorial 
plane as indicated by Mozer F1970], assuming a dipole field 
model and considering the magnetic field lines to be equipo- 
tentials (frozen-in lines). The shear flow mapping from the 
ionosphere to the magnetospheric equatorial plane has been 

•i: t'øiA/Uo 

< B- ri = .O025 
' 20 . - / 

.15 
• olo 
N 

'ø I , i 

0 .30 .60 .90 1.70 

NORMALIZED WAVEVECTOR,•: = KA 

i 

Fig. 3. Growth rate surfaces of the normalized Im ((3) versus nor- 
malized wavelengths kA at constant plasma medium parameters Ri 
for perpendicular modes. 
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TABLE 1. Typical Plasma Model Parameters Inside and Outside 
the Plasmasphere 

Plasma 
Parameters Inside Outside 

n, parts/cm 3 800.0 1.0 
KBT, eV 1.0 103 

The plasmapause position is at r = 4 R•, and the scale of variation 
of density and temperature is 0.5 R•. The parallel wave vector k ll - 
3.92 x 10 -s km -•. 

recently discussed by Kelley [1986], who indicated that the 
ratio R of the ionospheric to magnetospheric shear is given by 

(dV•/dx), B,• 4L:(L - •) R = (dV•/dr) m _ B, 
where L is the McIlwain shell numb er and B i and B m are the 
magnetic fields at the ionosphere and magnetosphere, respec- 
tively. 

An estimate of the velocity shear in the vicinity of the plas- 
mapause during a period of enhanced activity can be obtained 
using the observations of Srniddy et al. 1-1977-]. They have 
reported a peak electric field of 280 mV/tn at an altitude of 
1463 km for their most dramatic event and further estimated 

the maximum electric field shear (dE/dx) to be +_ 7.7 x 10 -6 
V/m:. Using a value of the magnetic field at ionospheric alti- 
tude of B•--0.56 G, we estimated an ionospheric velocity 
shear of (dV•/dx)i •- 0.15 s-x (where V• = E/Bi). Since there is 
no evidence of parallel electric fields in this region and by 
using a value for the equatorial plasmapause of L = 4 and an 
ionospheric to magnetospheric field ratio of B•/Bm = 115 as 
indicated by the observations, we estimated a velocity shear 
ratio of R = 1.8. This implies that the magnetospheric shear 
flow (dV,•/dr)a is about 0.083 s-x. We now estimate the quan- 
tity •,'•2 + kll2Ca2 at the equatorial plasmapause. Since in this 
region C• 2 >> C, 2 and rotational effects are negligible in com- 
parison to magnetic or thermal forces, we then can assume 
that g• << 2Cs2/r and 2C•2/r. Therefore the expression for 
fl•2(r) can be reduced to 

f•g:(r) vt2( 01nn 01nT _•) = 7 Or + Or + 

where vt is the ion thermal velocity defined as vt = 
(2KBT/M•) u2. From the plasma parameters in Table 1 we find 
density and temperature scale lengths of 477 km and 461 kin, 
respectively. Similarly, we calculated the thermal velocity to 
be about 309.7 km/s. With these parameters we estimated 
to be about 3.53 x 10 -2 rad/s, corresponding to a period of 
178 s. Consequently, the magnetic Richardson number Ri for 
this plasma model yields Ri = 0.18 and therefore represents an 
unstable situation according to the theoretical predictions. 
These estimates indicate that such a velocity shear is confined 
to a region A of about 928 km with a maximum flow velocity 
outside the layer of Uo = 78 kin/s, as obtained from the iono- 
spheric to magnetospheric mapping [Mozer, 1970; Kelley, 
1986]. The wave parameters associated with such magnetic 
Richardson number and plasma flow conditions can be deter- 
mined from Figures 2 and 3. FigUre 2 shows that for Ri = 0.18 
the range of unstable normalized wavelengths k occurs be- 
tween k = 0.43 and • = 1.14. This corresponds to a range of 
unstable wavelengths of 5.11 x 103 to 1.36 x 10 ½ kin. The un- 
stable modes characterized by these wavelengths have fre- 
quencies in the range of 2.88 x 10-3 to 7.65 x 10-3 Hz, corre- 
sponding to wave periods between 131 and 348 s. The maxi- 

mum growth rate co i associated with these eigenmodes gives 
5.83 x 10-3 rad/s at a wavelength of about 8.4 x 103 km (i.e., 
•ma, = 0.69). This estimate of the growth rate is larger than 
that predicted by Hasegawa [1971] and consistent with that 
predicted by Patel [1978]. The frequency range of these waves 
is also consistent with that of Pc 4-Pc 5 micropulsations, 
which are low-frequency hydromagnetic waves. An interesting 
parameter that can be determined using these results is the 
critical velocity shear necessary to obtain instability. We esti- 
mated that velocity shears greater than 0.071 s- x are sufficient 
to satisfy the condition Ri < 0.25; therefore the velocity shear 
obtained indirectly from ionospheric observations is well 
above such a critical value and can trigger the shear insta- 
bility. 

A similar analysis has been performed for another event 
observed by Rich et al. [1980] (see Figure 3 in their paper). 
They observe intense poleward ionospheric electric fields as 
high as 350 mV/m at altitudes of about 1300 km. Although 
they do not report their estimate of parallel current density or 
of electric field shear, we can nevertheless estimate a mag- 
netospheric velocity shear by mapping the typical drift veloci- 
ty caused by such an intense electric field into the equatorial 
plane and by assuming a similar velocity scale length A as in 
the previous example. It is found that such an electric field 
yields ionospheric drift velocities of about 10 km/s. Mapping 
such a velocity to the equatorial plane for L = 4, we find a 
velocity of about 80 km/s. Assuming then a velocity scale 
length of about A = 928 kin, we find a velocity shear (OVa/ 
Or)a = 0.09 s-x, which, as expected, is higher than in the pre- 
vious case. We estimated a magnetic Richardson number 
Ri = 0.15 for this kind of velocity shear, assuming the same 
plasma parameters as in Table 1. Similarly, the range of unsta- 
ble wavelengths • for Ri -0.15 occurs between • = 0.34 and 
• = 1.18. Wavelengths in the range of 4.94 x 103 to 1.72 x 10 '• 
km and frequencies between 2.33 x 10 -3 and 8.1 x 10 -3 Hz 
represent the unstable eigenmodes of the system. Such a fre- 
quency range corresponds to wave periods between 123 and 
429 s. The maximum growth rate co• associated with these 
modes is 7.6 x 10-3 rad/s at a wavelength of about 9.26 x 10 3 
km (i.e., • = 0.63). Figures 2 and 3 show that such an increase 
(decrease) in the velocity shear (magnetic Richardson number) 
implies a larger growth rate. 

It is important to mention that not all the ionospheric 
events shown by Rich et al. [1980] produce unstable situations 
(i.e., Ri < 0.25). Various events were either marginally stable 
(Ri "' 0.25) or fully stable (Ri > 0.25). Furthermore, variations 
in other parameters such as the temperature and density scale 
lengths, as well as the radial position of the transition layer, 
must be considered in order to investigate in more detail dif- 
ferent plasmapause conditions. These parameters affect the 
magnitude and sign of f/o:(r) and can stabilize or destabilize 
the shear instability. However, we shall not attempt in this 
paper to explore all the parameter ranges that can trigger the 
instability but instead present a physical description of this 
instability. 

6. SUMMARY AND CONCLUSIONS 

We have presented a unified linear analysis of a "shear 
flow-ballooning" instability to explain the excitation of low- 
frequency hydromagnetic waves in the inner magnetosphere 
using a nonuniform, compressible linear plasma model profile. 
The results indicate that low-frequency Alfv6n drift waves can 
be generated by such an instability. An important aspect of 
this analysis is the extension into the hydromagnetic context 
of the Richardson instability of hydrodynamic flows by unify- 
ing the K-H instability and the convective interchange insta- 
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bility. Essential to this extension is the concept of magnetic 
buoyancy produced by an effective gravity due to the curva- 
ture of the magnetic field lines, which allows the coupling 
between both instabilities. As a result, we demonstrated by 
dynamical principles the condition of instability for ballooning 
modes in a dipole field, which in the past has always been 
derived from energy principles. An important result that arises 
from the concept of the magnetic Richardson number is that 
even in the presence of small velocity shears the convective 
ballooning instability cannot be excited before a shear insta- 
bility, because the condition Ri < 0.25 is satisfied before the 
criterion Fig 2 < --kll2Ca 2. Accordingly, compressibility effects 
indicated by fig 2 and magnetic buoyancy are stabilizing effects 
to the K-H shear flow instability. 

With regard to the plasmapause case we find that if the 
indirect estimates of the equatorial velocity shears employed 
in our calculations are reasonable, then the shear flow- 
ballooning instability can be excited at the outer edges of this 
boundary. This instability may then be the source of hy- 
dromagnetic fluctuations with a predominant wave vector in 
the longitudinal direction (since kll << k_c ). On this basis we 
find that low-frequency hydromagnetic pulsations (Pc 4-Pc 5) 
with typical wave periods ranging between 123 and 428 s and 
wavelengths in the range of 5 x 103 to 17.2 x 103 km with 
typical growth rate of about 7 x 10-3 rad/s can be excited at 
the plasmapause boundary. From the typical plasma parame- 
ters observed at the plasmapause we infer, unlike other au- 
thors, that it is very unlikely that the purely thermally or 
centrifugally driven interchange can operate in its outer edges 
to excite hydromagnetic fluctuations. 

There still remain various aspects which deserve special 
consideration in the stability analysis: (1) to properly address 
the interchange mode, we must also include in the calculations 
the line-tying effects at the foot of the field lines due to a 
conductive layer (such as the ionosphere) that will tend to 
stabilize the ballooning instability and probably will further 
stabilize the shear instability; (2) a more refined treatment of 
the shear flow-ballooning instability must include kinetic ef- 
fects; and (3) although we assumed isotropic pressure, it is also 
possible to find additional energy sources for instability due to 
anisotropic effects in the thermal pressure of the plasma. 

APPENDIX 

The derivation of the general hydromagnetic wave equation 
(7) is conveniently accomplished using the MHD equations 
(1)-(5) in section 2. We consider that an inhomogeneous 
plasma is held by gravitational, rotational, thermal, and mag- 
netic forces in a spherical coordinate system centered at the 
earth. It is assumed that the plasma corotates with angular 
velocity fl e about the z axis in the presence of a dipole field 
whose axis is aligned to the rotation axis. The ambient equi- 
librium variables introduced are given in section 2 and shown 
in Figure 1. We consider solutions near the equatorial plane 
such that Bo(r, O)>> Br(r, 0), so that the equilibrium condition 
becomes 

•rr [ P ø(r) + = + _1 

where tie is an effective gravity and Ca is the Alfv6n velocity 
defined in section 2. Fluctuations of the equilibrium state are 
introduced by using perturbations of the form f(r) exp (-icot 
+ irnO + inc/)). Variables with a tilde represent the fluctuation 

amplitudes. Substituting these perturbations into the MHD 
equations (1)-(5) and separating them into components results 

in the linearized system given by 

iflpo g 2 ~ OP, - -- p o V,(V o + fler)= aefi r Or 

+• ik•Bo• •-- B o 
•o r 

-inpo• = -ikoP, +- ikoBo•o + + •r •/ •o r 

- + + (rv) + r • Or 

(A2) 

(A3) 

1 
= -ik•,P-• +- ikoBo]• • 

#o 

--if11•r = ikoB o P, 

-iflB-o = ikoBoPo + Bo P• Bo[r- 2 0 (r 2 •) r -- • 

-if•B• + 

(A4) 

(AS) 

(A6) 

(A7) 

0 (r2 •,) --i•/• = --Po r-2 •rr Opo + ",oo + - e, 
(A8) 

- oP o ( øPø• -iflP + P• • = C, 2 -iflfi + P, Or J (A9) 
where fl(r)= co- k4, V4,(r ) is the 'Doppler-shifted frequency, 
ko = rn/r and k•- n/r are the latitudinal and longitudinal 
wave vectors, respectively, Cs(r) is the sound speed (Cs(r)= 
[7Po(r)/po(r)]•/2), and Pt is the total pressure fluctuation (Pt = 
P + Boolo). 

Equations (A2)-(A9) can be further simplified by combining 
them to give the general wave equation for the perturbed 
amplitudes. First, we solve for the density perturbation • and 
the magnetic field fluctuations •,, •0, and • from the lin- 
earized equation of state (A9) and the modified Maxwelrs 
equations (A5)-(A7) in order to obtain the perturbed velocities 
P0 and P• from (A3) and (A4). The resulting equations for P0 
and P• are eliminated by substitution into the linearized conti- 
nuity equation (A8) and the radial component of the momen- 
tum equation (A2). The final result is the wave equation in the 
form of a coupled system of first-order differential equations 
for the amplitude perturbation shown as follows' 

O•(r) _ A(r)•(r) (A 10) 
where the vector •(r) is defined by 

(Pt) (A11) •(r)= r2•, 
Here •, is the radial displacement given as •r = i•,/fl(r), and 
A(r) is a two-by-two coupling matrix whose elements are 
shown by the matrix elements (9) in section 2 of this paper. 
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