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Magnetospheric Interchange Instability 

DAVID J. SOUTHWOOD 1 AND MARGARET G. KIVELSON 2 

Institute of Geophysics and Planetary Physics, University of California, Los An•teles 

The interchange instability is reviewed with particular emphasis on its relevance to planetary mag- 
netospheric processes. Results of earlier work are reviewed and drawn together by the derivation of a 
general stability condition, based on a small perturbation approach, for a plasma with isotropic pressure 
contained in a curved magnetic field in the presence of gravity. The results are not restricted to low 
pressure (low •) or special field geometry, and the straight field result is recovered in the appropriate 
limit. We use a small perturbation approach for the instability analysis. Conditions under which an 
effective gravity may be introduced to simulate rotational effects are discussed. Recent criticism of the 
Jovian ring current impoundment hypothesis which was based on the straight field line results is shown 
to be ill founded. 

INTRODUCTION 

Since Gold's [1959] original paper, interchange motions 
have been regarded as being of great importance in terrestrial 
magnetospheric physics. The term interchange describes 
motion in which flux tubes move without affecting the curva- 
ture at any fixed point. Few would quarrel with a first-order 
description of the terrestrial magnetospheric circulation 
system as a driven interchange motion. It has to be driven for 
two reasons. In the inner magnetosphere, where the magnetic 
field is dipolar, the net motion of the ring current particles is 
thought to be from flux tubes at high latitudes to low. 
Charged particles gain energy in the process, e.g., by conserv- 
ing the first two adiabatic invariants, and that energy must 
ultimately be provided by the driving source of the circulation 
system. In addition, the ionosphere forms a collisional bound- 
ary layer at the feet of the magnetospheric flux tubes, and 
energy must also be expended in moving the flux tube feet 
through the ionosphere. Through the bulk of the earth's mag- 
netosphere the motion is magnetohydrodynamic and proceeds 
without large magnetic field distortion. For the most part the 
magnetic forces dominate the gas pressure, the dynamic pres- 
sure of the flow, and any other forces (e.g., gravity) that act. 

Gold's [1959] original hypothesis was that interchange mo- 
tions would take place spontaneously; inward pressure gradi- 
ents in the plasma would provide a source of energy for con- 
vective overturning motion in the earth's outer ionized envi- 
ronment. It is now clear that the solar wind controls the circu- 

lation and that much of the charged particle population orig- 
inates from the distant parts of the system rather than the 
inner radiation zones. Thus Gold's hypothesis is no longer 
tenable. 

Gold's original idea may not be applicable to the high- 
pressure ring current region, but the interchange instability 
may still occur as a transient process when the system is se- 
verely disturbed. The ring current shielding process discussed 
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by Vasyliunas [1972], Jaggi and Wo/f [1973], and Southwood 
[1977] has very similar physics to the instability. Detailed 
studies of magnetospheric interchange instability were done 
by Sonnerup and Laird [1963]. Since the recognition that the 
processes that set up the ring current are likely to be inter- 
change stable (first tested by Nakada et al. [1965]), there has 
been particular interest in the instability's role in the forma- 
tion and stability of the plasmapause [Richmond, 1973; Le- 
maire, 1974]. 

The plasma circulation processes of the Jovian mag- 
netosphere are less well defined. Centrifugal forces are more 
important, sources of plasma are more complex, and far less 
information has been recorded by spacecraft. As there is a 
substantial interior equatorial source of plasma (namely, the 
satellite, Io), a net outward transport of plasma is expected. 
Melrose [1967] first examined interchange instability for the 
Jovian system. Interchange instability, perhaps rather like 
Gold originally envisaged, could provide an important means 
of redistributing plasma radially. Arguments that we shall 
review below show that in a dipolelike field configuration it 
can be energetically favorable for plasma to move outward 
under interchange. However, after the Voyager Jovian en- 
counters, Siscoe et al. [1981] pointed out that outward diffu- 
sion of Iogenic (cold) plasma through interchange would be 
stopped by the steep outward gradient of the hotter (ring 
current) particles found at the outer edge of the Io torus. They 
called this effect ring current impoundment of the Io plasma. 

Recently, Chen•l [1985] has called the theory of Io torus- 
ring current impoundment into doubt and furthermore has 
cast doubt on the operation of the interchange instability as 
understood by many previous authors from Chandrasekhar 
[1958] onward. The purpose of this paper is not so much to 
refute Cheng's result (in fact, we show that his instability con- 
dition is correct in appropriate circumstances) but rather to 
rehabilitate the previous work. 

The condition derived by Cheng was derived earlier by Tser- 
kovnikov [1960] and also by Newcomb [1961]. Newcomb 
showed that the condition found by •Cheng was of limited use 
in that there exists a class of "quasi-interchange" motions that 
very slightly bend the field for which the stability condition is 
independent of the field (i.e., whose stability is governed by the 
familiar Schwarzschild condition for an unmagnetized strati- 
fied atmosphere [Schwarzschild, 1906]). The implication of 
Newcomb's result is that the straight field interchange motion 
is singular and, in general, the quasi-interchange condition, 
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the Schwarzschild condition, is the more relevant. When the 

undisturbed equilibrium has field lines that are curved, the 
singularity is removed. In particular, when gravity is negligi- 
ble, the stability condition proposed by Gold [1959] holds. 
When the field is curved, we shall see that interchange mo- 
tions are possible that conserve the field energy, and in these 
circumstances the interchange stability condition does not 
depend on the field strength. 

The standard treatment of the interchange instability (see, 
for example, Newcomb [1961] and Cheng [1985]) is based on 
an energy principle [Bernstein et al., 1958]. The energy has to 
be calculated to second order, and there has been some con- 

fusion over the precise form of the flux tube energy [Cheng, 
1985]. Our approach is exactly equivalent to the many earlier 
works, but we adopt a small amplitude perturbation approach 
which makes clear what dynamical constraints are satisfied. 

INTERCHANGE MOTIONS AND EQUILIBRIUM 

We shall consider small amplitude departures from an equi- 
librium in which a plasma embedded in a magnetic field is 
supported by field and gas pressure gradients against a gravi- 
tational field. In the initial equilibrium one has 

V p-j x B=nmg 

or alternatively, 

V(p + B2/2/•o) -- b ß VbB2/•0 = nmg 

or 

VP r -- B2/!•o c -- nmg = 0 (1) 

where j is the electrical current density, b is the unit vector 
parallel to the field B, c is the field curvature, b ß ¾b, and Pr is 
the total (plasma plus magnetic) pressure. 

We now consider displacing the plasma from equilibrium. 
In an interchange motion, flux tubes retain their shape; the 
field strength may change, but the field is not bent. Accord- 
ingly, we consider displacements that are perpendicular to the 
unperturbed field. Furthermore, we shall have to place con- 
straints on the manner in which the displacement varies both 
along and across the background magnetic field direction. 

We shall proceed by considering a perturbation velocity 
field, u, and a corresponding plasma displacement, u/a (i.e., we 
shall take the displacement to vary with time as exp (at)). It is 
easier to discuss stability rather than instability directly. To 
demonstrate stability, we shall have to show that there are no 
displacements for which a 2 is real and positive. (In dissipation- 
free MHD there is no possibility of cr 2 being imaginary.) 

GOVERNING EQUATIONS 

The first-order changes in density, n {•), and pressure, 
are given by 

an(J)= -n(V ß u) -- u ß Vn (2) 

ap {•)= --7p(V' u)- u. Vp (3) 

where 7 is the ratio of specific heats. Equation (3) is derived 
from the adiabatic change of pressure in the plasma rest 
frame. 

The field change is computed from the frozen field equation 

aB (•)= V x (u x B) (4) 

Taking the scalar product of B/• 0 with equation (4), one finds 

after a little manipulation that the field pressure change is 
given by 

aBB(•)/• o = --(V ß u)B2/kto -- u ß VB2/2kto -- u ß cB2/kto (5) 

It is also appropriate at this point to use equation (4) to derive 
constraints on the allowed variations of u along and across the 
field that are inherent in the assumption of interchange 
motion. We introduce temporarily a local coordinate system 
based on the undisturbed field. We choose a coordinate, xx, 
along the ambient field, such that 

dx• - ds/B (6) 

where ds is an elemental length along the field. 
Now we choose the second coordinate such that it is con- 

stant along field lines. At each point along the field, x 2 points 
in the direction of a potential interchange motion. After an 
interchange displacement the locus of all particles that started 
on a given field line corresponds to a field line of the original 
field. A third orthogonal coordinate direction, x3, is then 
uniquely specified at each point of the tube. We choose the 
coordinates x2, x 3 such that they are flux conserving, i.e., 

B dS = dx 2 dx 3 (7) 

where dS is the elemental area perpendicular to the field at 
each point. 

Let us suppose that the scale factors for the three coordi- 
nates are hx, h2, h3, and unit vectors are 6x, 62, 63, respectively. 
Evidently, 

It also follows that 

h• = B h2h 3 - B- • (8) 

Vx• = 6x/hx (9) 

and there are similar relationships for the other coordinates. 
The introduction of such a coordinate system allows the 

vector interchange motion to be represented on the local flux 
tube by 

U: U262 (10) 

Two important properties of interchange motions can be 
derived using the local coordinate system, (xx, x 2, x3). By 
vector manipulation of the scalar product of ¾x2 with equa- 
tion (4) one may show that 

B. V(u2/h2) = 0 (11) 

Thus u2/h 2 is independent of position along a given tube. The 
requirement expresses the fact that the displacement is pro- 
portional at each point along the field to the spacing between 
the field lines in the equilibrium. A subtler relation holds con- 
cerning the divergence of the flow field and the displacement: 

V ß U = J-1 •(Ju2/h2)/•x 2 (12) 

where 0r is the Jacobian of the coordinate transformation, i.e., 

h•h2h3, from the Cartesian to the field-aligned system. How- 
ever, by construction, 0r is unity, and as u2/h 2 is independent 
of position along the field, it follows also that div u is also 
independent of position along B. 

The dynamical requirement on the displacement is that the 
first-order momentum equation be satisfied. In an interchange 
motion the field is not bent; thus to first order one has 

nmau = --V(p (•) + BB(•)/•o) + 2cBB(•)/• o + n(•)mgñ (13) 
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where the subscript _t_ signifies the component perpendicular 
to the ambient magnetic field. 

QUADRATIC FORM 

We next develop an expression for the total energy associ- 
ated with the perturbation. The initial step is to take the scalar 
product of equation (13) with u. One finds 

nmau 2 = -- u ß V(p {x) + BB (x)/!•o) 

+ 2u ßcBB (x)//•o + n(x)mg ß u (14) 

Equation (14) expresses energy conservation point by point. 
The right-hand side is the rate of work done (power) by the 
body force within the plasma; the left-hand side is the rate of 
change of kinetic energy. 

Next we integrate equation (14) throughout the volume in 
which the plasma is displaced. One has 

;nmau2dV=--;{u.V[p(X)+BB(X)/!• o] 
-- 2u. cBB{X)/!.• o -- n{X)rng ß u} dV (15) 

where the integrals are understood to be taken over the entire 
volume in which the perturbations are present. 

Now we make use of the vector identities 

V. [up (x) ] = u. Vp (x) + p(X)V. u (16) 

V ß [uBB {x)] = u. V[BB (x)] + BB{X)V ß u (17) 

and Gauss's theorem to give 

j"nmau2dV=- yu(p(X'+BB(X'/llo).dS 
+ f [(V ß u)(p (x) + BB(X)/•o) 
+ 2u. eBB(X)/•o + n{X)rng ß u] dV (18) 

Substituting from equations (2), (3), and (5) and the equilibri- 
um condition, (1), gives 

;nma2u2dV=-- •{(V'u)2py 
+ 2(V ß u)u ß [VP r + cB2//1o] 

+ 2u ß c[u. VB2/2/to + u ß cB2//to] 

+ (mg. u)(u. Vn)} dV (19) 

where Py = (7P + B2//•o) and we have removed the contri- 
bution from the surface integral by taking the boundaries to 
be outside the region in which the plasma displacements take 
place. 

For stability, a 2 must be negative for all possible displace- 
ments. Let us rearrange (19) such that the cross terms in V ß u 
and u on the right appear in a perfect square. We obtain 

• nma2u2 dV = -- ; {P•[(V . u) + u . (VPT + CB2/•o)/P•]2 
+ 2u ß e[u ß VB2/2/1o + u. eB2//1o] 

-- [u. (VP T + ee2/l•o)]2/Py + (rag. u)(u. Vn)} dV (20) 

After further algebra and substitution of the equilibrium con- 
dition, (1), we can recast the equation in the following form: 

f nmo'2u dV = - ; {PyE(V ß u) + u ß (VP r + cB2/lto)/Py] 2 
-- u ß (Vp -- Vpcr)E2B2/!•o(U ß c) + nmg ß u]/P• 

+ mg. u(u. ¾n- u. Vnc0 } dV (21) 

where the "critical" presure and density gradients, Pc•, nc•, are 
defined such that 

Vpc • = yp[(VB)/B + c] (22) 

and 

Vnc• = n[(VB)/B + c] (23) 

Now consider the expression (21). For stability, there must be 
no perturbation possible for which the right-hand side of (21) 
is positive. The first term is a square and thus is always stabil- 
izing; the worst case is a perturbation for which it is zero, i.e., 
for which 

(V. u) + u. (VP T + eB2/i•o)/Py = 0 (24) 

Inspection of equations (3) and (5) shows that condition (24) 
corresponds to the requirement that the total perturbation 
pressure (plasma plus magnetic) is balanced. It has a ready 
interpretation in the dynamical picture of instability. Consider 
equation (15). The curvature and gravity forces are the sole 
forces acting when the total pressure vanishes. In a field where 
the external (gravity or other) force, the curvature, and the 
pressure gradients are coplanar, i.e., act in meridians in a plan- 
etary context, the total perturbation pressure balance will en- 
courage the fastest growth of motions that are restricted to the 
meridian. Driving flow out of the meridian consumes energy 
without releasing any and is thus energetically less efficient. 

The remaining terms in (21) are proportional to the square 
of the amplitude of the displacement. Consider the pressure 
gradient terms. The worst case from the point of view of sta- 
bility is when the gradient in pressure points in the same 
direction as the curvature vector, e, and exceeds the critical 
pressure gradient given by (22) over some part of the flux tube. 
The final terms involve gravity. Evidently, a gradient in den- 
sity in the opposite direction to the gravity field reduces the 
stability of the system. 

In the context of planetary magnetospheres it is reasonable 
to assume that the gravity field points in the same sense as the 
field curvature vector (toward the planet). It follows that nor- 
mally the gravitational force will stabilize motions where the 
field curvature is destabilizing. 

ROTATING SYSTEMS 

In a rotating system the centrifugal force enters the basic 
equations as an effective gravitational force that points away 
from the planetary rotation axis. In addition, in a rotating 
system, Coriolis force will enter the dynamics. However, there 
are some further subtleties. If the system is rotating, there 
must be some force acting to maintain the rotation. In the 
case of a magnetosphere in steady state the field stresses act to 
enforce corotation with the planetary ionosphere. There may 
thus be "hidden" forces to be accounted for when one consid- 

ers interchange motions in a rotating system. 
We shall assume that rigid corotation is maintained on the 

time scale of the interchange displacements we consider. 
(Other possible assumptions are examined in the discussion 
section later in the paper.) As a result, angular momentum will 
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not be conserved when plasma moves at right angles to the 
rotation axis. The forces in the system that counter the Co- 
riolis force in the azimuthal sense are transmitted through the 
plasma by the field. The energy associated with spinning flux 
tubes up or down is provided by the ionosphere of the planet. 

With the assumption of rigid corotation there is no azi- 
muthal perturbation velocity. In the meridian there is no Co- 
riolis force component, and the perpendicular equation of 
motion takes the form 

nmau = -- V(p (•) + BB (•)/po) + 2eBB( •)/po 

+ n(•)mg•_ -- n(•)m[fl x (fl x r)]•_ (25) 

where fl is the angular velocity of the plasma. 
A modified energy equation which replaces (13) is obtained 

by dotting (25) with u. It is evident that the set of equations 
governing the instability remain unchanged if g is replaced by 
an effective acceleration: 

gE =g- f! x (fl x r) (26) 

In an idealized rotating system with straight field lines [Cheng, 
1985], one or the other of the terms in (26) is usually dolni- 
nant. In magnetospheric applications, although the centrifugal 
acceleration may dominate near the equatorial portion of a 
flux tube, it may be necessary to retain both terms of gE 
because of the importance of the gravitational contribution 
near the feet of the flux tube. 

Before proceeding, let us discuss the extreme cases where 
curvature or gravity clearly dominate. 

INTERCHANGE MOTION IN CURVED FIELD GEOMETRY 

(No GRAVITY) 

Dropping the terms involving g in equation (21), we have 

• rtmrr2u 2 d V= -- • {P•[(V.u)+u.(VPT+ eB2/•o)/P•] 2 
-- 2u-(¾p- VPcr)(B2/l•o)[(u. c)/P•]} dV (27) 

We can use (27) to derive necessary and sufficient conditions 
for stability and thus also for instability. The worst case per- 
turbation, i.e., the most stringent test of stability, is one for 
which the terms forming a complete square are zero. There- 
fore, as proposed above, we choose u such that 

(V- u) + u. (VP r + cB2/!•o)/Py = 0 (28) 
or, using the equilibrium condition (1), 

(V ß u) + 2(u. em2/l•o)/Py = 0 (29) 

The remaining terms make a negative contribution to the 
right-hand side of (21) wherever 

(u ß c)u ß (Vp -- VPcr) < 0 (30) 

Condition (30) is a sufficient but not a necessary condition for 
stability. It may be satisfied over only a section of a flux tube, 
and yet in an interchange motion the flux tube must move as a 
whole. For a necessary and sufficient condition for stability we 
must derive a condition that holds for a tube as a whole. Let 
us break up the integral (27) by flux tube and reintroduce the 
flux tube aligned coordinate system defined following equa- 
tion (6). Then using (29), one may rewrite the residual terms in 
(27), integrated along any given flux tube, as 

• nmrr2u 2 dx• = -- f dx• u ß (Vp - VPc•) V ß u (31) 
Now recall our earlier demonstration that V. u is indepen- 
dent of position along the flux tube. It may thus be moved 
outside the integral. Similarly, u-(¾p) can be removed from 
the integral because p is constant on each flux tube, and using 
the local coordinates introduced earlier, 

u-(Vp) = (u2/h2)•p/•x2 (32) 

Let us choose the coordinate x 2 to increase in the direction of 
curvature. The condition for stability then becomes 

c3p/c3x 2 <[f d,x, (h2)-•(&pc•/&x2)]/(f dx•) (33) 
Equation (33) can be further simplified once it is noted that 
Vpc • is related to the local gradient in flux tube volume. Con- 
sider an elemental length, ds, along the field. The local gradi- 
ent of the volume, ds/B (or dxa), in the direction of •2 is given 
by 

f•2 ' V(ds/B)= ds •2 ø [--(VB)/B 2 --c/B] (34) 

and thus (33) can be rewritten as 

•p/c•x2+[ypr3(;dXl)/r3x2]/(f dxl)<O (35) 
Writing the local flux tube volume, • dx•, as V, it follows from 
(35) that the necessary and sufficient condition for stability is 

r3(p V•)/r3x2 < 0 (36) 

Now provided the curvature vector retains the same sense 
with respect to the pressure gradient at all points of the flux 
tube, as is likely to hold in any planetary magnetospheric 
context, one may also write the condition as 

c. V[pV y] < 0 (37) 

Condition (37) is equivalent to that given by Gold [1959] for 
the low plasma pressure (low fl) case. Our calculation is valid 
for any value of the ratio of plasma to field pressure. 

Low-PRESSURE GRAVITY (CENTRIFUGAL) DRIVEN 
INSTABILITY 

Let us now consider a circumstance where the plasma pres- 
sure is slight and the equilibrium force balance perpendicular 
to the field is maintained by an effective gravity. An example is 
the rapidly rotating low-pressure Io torus in the Jovian mag- 
netosphere, where the centrifugal force is much more impor- 
tant than the pressure. 

If the pressure terms are dropped from equation (21), it 
reduces to the form 

;nma2u2 dV = -- ; [{B2/Ito{V . u + u . [(VB)/B + c]}2 
+ (mg- u){(u ß Vn) -- nu- [(VB)/B + c]}] dV (38) 

Just as previously, the worst case perturbation is one where 
the first term forming the complete square vanishes, which 
here requires 

V ß u + u. [(VB)/B + e] = 0 (39) 

a condition requiring that the field strength is not perturbed 
(cf. equation (5)). 
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The remaining terms contribute to stability as long as 

(mg- u){(u ß Vn)- nu. [(VB)/B + el} dV > 0 (40) 
for all possible perturbations. Let us assume that the worst 
case is where the displacement is in the x 2 direction and as 
before break up the volume integral by flux tube. For a given 
flux tube to be stable one requires that 

(mq2u){(u. Vn)- nu- [(VB)/B + el} dV > 0 (41) 
where •/2 is the component of g in the (•2 direction. 

Recalling that for an interchange motion u2/h 2 is constant 
for along the field, we may remove u from the integral. The 
stability condition for a given flux tube then requires that for 
all possible directions, x2, 

(m•t2h2){(h2(c•n/c•x2)- n[(c•m/c•x2)/m + c2h2] } dx, > 0 (42) 
where c• is the component of the curvature in the x: direction. 

Now the presence of the gravity field implies that in general 
there will be a variation of the density along the flux tube. It 
follows that the stability condition will normally take the flux 
tube integral form given in (42). However, if the force field 
varies little along that region of the flux tube occupied by the 
plasma, one may rewrite the condition in the form 

f {(c•n/c•x2)- n[-(c•B/c•x2)B + c2h2] } dx I > 0 (43) 
i.e., from 04) 

i.e., the total flux tube content increases in the direction of the 

gravitational force. 

GENERAL STABILITY CRITERION FOR CURVED FIELDS 

The treatments of the preceding two sections can be com- 
bined to give a general stability condition. Once the pertur- 
bation has been chosen such as to conserve total pressure, the 
residual terms of (21) are 

• nma2u 2 dV=; {u- (Vp-VPo.)[2(B2/!ao)(U.c)+nmg. u]/P•, 
--mg. u(u. Vn- u- Vnc,)} dV (45) 

Once more we seek a flux tube integrated condition for stabili- 
ty that is both necessary and sufficient. As before, we shall 
define the t• 2 direction as that of the locally most unstable 
perturbation. The amplitude of u can be removed from the 
integral by recalling that it is proportional to h 2. Similarly, 
gradients can be removed by noting that u ß V can be replaced 
by (u2/h2) c•/c•x 2. Equation (28) still holds, as in the zero grav- 
ity case, and it follows that the term 

[-2(B2//•o)(U ß c) + nmu. g]/P• 

is equal to (--V-u) and can be taken outside the integral 
along the tube. 

The general stability requirement is then that for all possi- 
ble directions the following condition holds: 

f {K2(c3p/c3x -- C3Pcr/C3X2) 
-- m•12h2(c3n/c3x2 -- C3ncr/C3x2)} dx• < 0 (46) 

where the quantity K is constant along a flux tube and is 
given by 

K 2 -- [2(B2/lloXh2c2) + nmh2a2]/P • (47) 

One cannot in general take any of the pressure gradient or 
density gradient terms out of the flux tube integral, since the 
pressure and density will not be uniform along the field but 
will be distributed such as to balance the external gravity or 
centrifugal force component along B. Where the gravity or 
effective gravity does not vary strongly in the region in which 
the plasma is trapped, one may write a condition using flux 
tube averaged pressure and total flux tube content. Ignoring 
the variation of the gravity field along the tube, one has 

K2(c3p/c3x 2 -- C3Pcr/C3X2) -- ma2h2(c3n/c3x2 -- C3ncr/C3x2) < 0 (48) 

where V is the flux tube volume. One may rearrange the sta- 
bility requirement as 

K2[O(pV•)/Ox2]/V • -- (mo2h2/V)[ON/Ox2] < 0 (49) 

where N is the total flux tube content, • dx• n. 
Condition (49) is relevant to the ring current impoundment 

of cold Io torus material diffusing outward in the Jovian mag- 
netosphere. Centrifugally driven interchange motion will be 
inhibited by an adverse gradient of hot plasma [Siscoe et al., 
1981]. Near the equator the appropriate direction for the x 2 
direction is radially outward along the dentrifugal force direc- 
tion. In the absence of hot plasma, interchange instability will 
set in (i.e., interchange will spontaneously occur) when the 
total flux tube content N increases inward. The presence of the 
hot plasma modifies that condition substantially wherever 
there is an outward gradient of the quantity (pV•), in particu- 
lar, as will occur at an inner boundary of the hot distribution. 

THE CASE OF STRAIGHT FIELD LINES 

The special case of the stability of a plasma embedded in a 
horizontally stratified horizontal magnetic field supported by 
field and gas pressure gradients against a vertical gravitational 
field, g - -q•, has received considerable attention. The stan- 
dard results, as first derived by Tserkovnikov [1960], can be 
recovered by setting c to zero in equation (45). The volume 
integrations can be dropped. One finds that stability requires 

P•[dn/dz - (n/B)dB/dz] > n{dp/dz - (yp/B)dB/dz} (50) 

By algebraic manipulation and substitution from the equilibri- 
um condition (1), equation (50) may be reduced to either of the 
familiar forms required for stability: 

P•,(dn/dz)/n > dPT/dZ (51) 

P•(dn/dz)/n > -- nma (52) 

with q>0 [Tserkovnikov, 1960; Newcomb, 1961; Chenq, 
1985]. 

The pertinence of these criteria was challenged by Newcomb 
[1961], who pointed out that the condition for interchange 
instability of straight field lines was a singular case in the 
sense that there always exists a lower threshold for noninter- 
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change motions. In particular, he introduced the notion of 
quasi-interchange motions whose stability condition was 

-7p(dn/dz)/n > nmg (53) 

Equation (53) has the same form as (51) with the field set to 
zero and is clearly a more stringent stability requirement. We 
sketch a derivation of the result in the appendix. 

Comparing equations (A2) and (A3) for the particle and 
magnetic pressure perturbations with the conditions (A5) and 
(A6) leads one to the conclusion that the dynamical require- 
ment that the total pressure be constant constrains quasi- 
interchanges also. Equation (A6) can be rewritten as 

V ß v = c•vll/c•s + V ß u = --u ß VPr/yp (54) 

Using (A5), one finds 

7P c•vll/c•s = --u- VP r = --rang. u (55) 

The left-hand term is proportional to the rate of change of 
internal plasma energy, and the right-hand side shows that it 
equals the rate of change of gravitational energy. Thus the 
introduction of parallel motion allows release of internal 
energy without requiring field compression (cf. (A5)). 

Newcomb [1961] shows that if the true interchange stability 
condition (52) is not satisfied, then pure interchange motions 
grow, and quasi-interchange motions do not. However, in the 
regime for which (52) is satisfied but (53) is not, quasi- 
interchange motion will occur. 

The case of straight field lines is, however, a special case. 
Quasi-interchange motions require very long parallel scale 
lengths (Lñ/Lii << 1; see discussion following (A1)). In mag- 
netospheric applications the parallel scale length associated 
with gravitational effects is of the same order as the radius of 
curvature, R c --Icl-•, and the perpendicular scale length is 
that characteristic of the background field or plasma pressure. 
In these circumstances the condition for quasi-interchange is 

R c >> L B (56) 

but one expects R c = LB. Thus we feel that the Newcomb 
modification and the straight field line result itself are of limit- 
ed relevance to magnetospheric physics applications. 

CONCLUSIONS 

In this paper we have derived the conditions for interchange 
instability covering any value of field to plasma pressure, the 
effect of body forces proportional to the density (gravity, cen- 
trifugal), and the full effects of field curvature. Many of our 
results have been derived previously but have not been pre- 
sented in the collected form that we have here. 

All of the results presented for curved field geometry have 
an integral form. This is inevitable, and it does preclude 
making hard and fast judgments from parameters measured at 
one point. The essential feature of an interchange motion is 
that flux tubes move as wholes. The energetics of such mo- 
tions evidently depend on the entire flux tube population. 

Recognition that plasma conditions may vary with respect 
to position along the field line will be particularly important 
when density dependent gravitational or centrifugal forces are 
present. In such circumstances the equilibrium forces have 
components parallel to the magnetic field, and there may be a 
strong variation in the background parameters parallel to the 
flux tube. Furthermore, as an interchange motion proceeds, 
the equilibrium distribution parallel to the magnetic field di- 

rection will be disturbed, and the motion will be accompanied 
by transient processes redistributing plasma along the field. 

In a rotating system there is further complication, because 
radial motion requires consideration of the redistribution of 
angular momentum along flux tubes as interchange takes 
place. The question has been discussed by Newcomb [1962], 
who pointed out that magnetic stresses in any particular flux 
tube would redistribute angular momentum along the tube. In 
circumstances where, in the absence of the field, the angular 
momentum of fluid elements would be conserved, the redistri- 
bution brings tubes to a constant angular velocity, and thus it 
is the mean angular momentum in the tube that is constant. 

Recently, the problem of stability of a rotating system has 
been reexamined by Rogers and Sonnerup [1986], who invoke 
conservation of angular momentum to add a further term to 
an energy expression similar to (21) and others in this paper. 
There is an important difference between the plasma configu- 
rations considered by Newcomb [1962] and Rogers and Son- 
nerup [1986] and what is appropriate for a planetary mag- 
netosphere. All flux tubes in a magnetosphere attach to a 
conducting ionosphere, which in turn rotates with the planet. 
We have assumed that the energy to maintain corotation is 
provided by the planet and thus does not enter our calcula- 
tions. As can be deduced from the nonconservation of angular 
momentum, there must be forces introduced in the process of 
the interchange that are azimuthal (noncentral) in order to 
keep tubes rigidly rotating. Evidently, as one moves away 
from the planet, the time scale for imposing corotation in- 
creases. There is a case for further work to consider departures 
from rigid rotation. The work of Rogers and Sonnerup [1986] 
shows that the Coriolis force must be carefully considered 
once the system departs from rotation at a single angular 
velocity. Its effect is to make interchange motions more stable 
than in the rigidly rotating system. It follows from their work 
that the standard energy principle for a nonrotating system, 
modified only by inclusion of an effective centrifugal gravity 
(i.e., as given in equation (21)), yields a sufficient condition for 
stability. 

In magnetospheric applications the rotational and the 
gravitational forces are often not important, and the curvature 
effects dominate. Our results show that in this situation the 

interchange instability condition depends on how the pressure 
varies with flux tube volume, V. The plasma is unstable, and 
one expects interchange motions to be spontaneously gener- 
ated, when the pressure in the plasma decays more slowly with 
flux tube volume than if it were distributed according to the 
law 

pV • -- const (57) 

A distribution satisfying (57) would be set up if the plasma 
were injected from regions of large flux tube volume, i.e., high 
L shell, to small flux tube volumes at low L by a process 
wherein the pressure was maintained isotropic with respect to 
the field and there was negligible loss. Once loss becomes 
important in any such flow, the pressure gradient drops below 
the "adiabatic" value given by (57), and the distribution would 
be stable. In practice there is a little difference in general 
principle when there is no systematic isotropization of the 
plasma as the plasma moves to smaller volume flux tubes. 
Anisotropy in the pressure results in nonuniform plasma dis- 
tribution along the field line and doubtless differences in the 
details of the precise condition. However, the general orders of 
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magnitude implied by the condition (57) are sound unless a 
very extreme distribution is chosen. 

Recent controversy about the effect of the ring current pres- 
sure gradient on the rate of net outward motion (or diffusion) 
of Iogenic plasma through interchange instability can now be 
resolved. The flux tube content, N, of the Iogenic torus plasma 
has a negative gradient outside the orbit of Io at 6 Rj (Rj is 
the radius of Jupiter). That gradient changes markedly in the 
vicinity of flux tubes crossing the equator at 8 Rj. Siscoe et al. 
[1981] proposed that near 8 Rj the relatively dense and cool 
torus plasma is "impounded" by a steep outward gradient of 
low-density energetic ring current plasma, which inhibits its 
further outward diffusion. Cheng [1985] challenged this de- 
scription on the grounds that in the presence of strong centri- 
fugal effects the positive pressure gradient would be inter- 
change unstable. His argument appeals to the instability con- 
dition for straight field line geometry (equation (51) or (52)). 
Reversing the inequality to apply to the case of an outward 
directed centrifugal force, one finds that when field lines are 
straight, a negative density gradient and a positive pressure 
gradient are necessarily unstable to interchange. 

As we have shown, all is changed once the consequences of 
field curvature are considered. The relevant condition for in- 

stability is that the right side of (49) must be positive. A re- 
quirement for instability in the latter expression is that the 
gradient in pressure must be directed toward the center of 
curvature of the field line, i.e., inward. Thus the outward pres- 
sure gradient of the ring current would inhibit interchange 
motion. Cheng's [1985] criticism of the conclusions of Siscoe 
et al. [1981] concerning the stabilizing effect of an outward 
pressure gradient does not hold once curvature effects are 
included (as Cheng himself points out may be so). 

There have been papers such as the one by Newcomb 
[1961] or, recently, Vi•as and Madden [1986] which have 
pointed out that in addition to interchange there exist similar 
instabilities wherein the field is allowed to bend. Under some 

circumstances, such instabilities may have thresholds lower 
than the interchange. The Vifias and Madden paper empha- 
sizes shear ballooning instabilities, but the treatment covers 
some interchange motions also. Ballooning motions are very 
important and may well give rise to wave and wavelike struc- 
tures in space plasmas. Some fraction of the large variety of 
magnetic pulsation phenomena reported in the earth's mag- 
netosphere can doubtless be attributed to such effects. How- 
ever, the interchange motion has a distinctive property that 
singles it out for attention; it is the sole class of motion that 
leaves the basic field configuration unchanged, and thus it can 
potentially describe steady configurations wherein plasma 
created within the system or injected from the solar wind or 
planetary ionosphere is redistributed by a self-induced or 
driven convection. 

There may of course be field and plasma configurations in 
which interchange motions are not possible. Such a field 
would not be able to support a steady plasma adiabatic con- 
vection system, and plasma redistribution would be an in- 
herently unsteady process. For example, it has been proposed 
that the earth's magnetotail has such a property [Erickson and 
Wolf, 980]. 

In the treatments presented here, many potential effects 
have been neglected. In particular, a kinetic approach can be 
very useful. When plasma pressure is small compared with the 
field pressure, one expects that a marginally stable distribution 
will correspond to one resulting from the loss free injection of 

particles from large flux tube volume regions to small under 
conservation of the first two adiabatic invariants. The con- 

dition in such a case is closely related to the minimum-B 
plasma equilibrium condition [Taylor, 1964] and was con- 
sidered in detail by Chang et al. 1-1965]. 

Another extremely important feature of a kinetic or quasi- 
kinetic treatment (see, for instance, Richmond [1973]) is that 
the wavelength or scale length of the flux tube motions per- 
pendicular to the direction of inhomogeneity becomes impor- 
tant. As Richmond [1973] shows, an unstable distribution of 
low-energy plasma may be capable of executing an inter- 
change motion in the presence of a stabilizing high-energy (i.e., 
ring current) population, if the energy difference of the distri- 
butions is significant enough. The decoupling is accomplished 
on short scales because the more energetic particles VB drift 
through the small-scale structures fast enough that their inte- 
grated displacement is much smaller than that of the lower 
energy unstable particles. 

In a system where rotation is unimportant, the ionosphere 
cannot affect the actual instability condition. It behaves very 
like a frictional boundary layer, and it does control the rate at 
which any motion takes place (see, for example, Chang et al. 
[1965] and Richmond [1973]). As we have discussed above, in 
a rotating system, matters are more complicated, and the ener- 
getics are affected by the degree to which the ionosphere can 
impose corotation on the magnetospheric flux tube. 

APPENDIX: QUASI-INTERCHANGE MOTIONS 
IN A STRAIGHT FIELD GEOMETRY 

Newcomb's result, given as equation (53) above, is found by 
relaxing the constraint that there be no variation in the per- 
turbation along the direction of the background field. Quasi- 
interchange motions allow for variation to first order along 
the background field. Then the perturbation magnetic field 
must be allowed to have perpendicular as well as parallel 
components. In addition, we allow for parallel components of 
the flow. 

If we drop the background field curvature, the first-order 
equation replacing (14) becomes 

nmav 2 = --v- Vp (•)-- u- VB cSBii//•0) 

+ v- [c•B_c ß VB//•0] + n(•)mg ß u (A1) 

where v = (u, vii) and B (•) = (fiB_c, c•Bii ). Note that the familiar 
"ballooning" term (B ß Vc•B_c ) [cf. Vifias and Madden, 1986] is 
dropped in the quasi-interchange approximation; the term is 
smaller than the other new terms in (A1) by a factor of La_/Lii 
(the ratio of characteristic scale lengths perpendicular and 
parallel to the unperturbed field). 

The pressure and density perturbations are modified by the 
possibility of moving plasma along the field. Thus equation (3) 
is replaced by 

ap (•)= -7p(V. v)- u-Vp (A2) 

and equation (2) is similarly modified. Equation (5) for the 
magnetic pressure perturbation is unaffected by parallel 
motion: 

(SBB(•)//ao = --(V ß u)B2/kt0 -- u ß VB2/2kt0 (A3) 

The manipulations proceed as in the interchange calculation, 
and the generalization of equation (21) is 
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nmtr2u 2 dV---- •{(B2/po)(V ß u) 2 -{- }:p[V ß ¾ q-u- VPT/•p] 2 
--(u ß VPT)2/yp + mg. u(u- Vn)} dV (A4) 

The worst case for stability occurs when 

V.u=0 

and 

V . v + u . VPT/•p = 0 

Stability then requires that 

g ß (Vn - nVPT/yp ) > 0 

This is directly equivalent to the statement (53) of the text. 
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