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Chapter 5. MHD Kelvin-Helmholtz Instability in a Compressible Plasma 

 

5.1. Introduction 

 

Velocity shear in a fluid can trigger velocity-shear instability, which is also called the 

Kelvin-Helmholtz (K-H) instability.  Examples of the K-H instability in nature include 

wind-induced water waves, vortices caused by water flows with different velocities in a river, 

cloud vortices generated by air flow around an island, and the wavy and twisting auroral 

curtain due to the shear motion of plasmas on two sides of an auroral arc.  In addition to 

these visible wavy or vortex structures, large-scale phenomena are also observed by 

spacecraft in the velocity-shear regions of space plasma both at the flank magnetopause (e.g., 

Ogilvie and Fitzenrieter, 1989; Chen and Kivelson, 1993; Chen et al., 1993; Fairfield, et al., 

2000; 2003) and at the leading and trailing edges of high-speed solar wind streams (e.g., 

Belcher and Davis, 1971; Mavromichalaki et al., 1988; Neugebauer and Buti, 1990). 

 

Nonlinear evolution of the K-H instability could result in vortices in saturation stage.  

However, due to the tension force of water surface, the wind-induced water waves usually 

show undulate structures without vortices.  Similarly in the magnetohydrodynamic (MHD) 

plasma, when the background magnetic field is parallel or anti-parallel to the sheared flows, 

the magnetic tension force can stabilize the instability and reduce the growth rate.    

 

The compressional effect in the K-H instability is negligible when the flow speeds on both 

sides of the TD are subsonic in the surface wave rest frame.  The compressional effect 

becomes important when the flow speed on either side becomes supersonic, or 

supermagnetosonic in the surface wave rest frame.  Supermagnetosonic velocity shears are 

commonly observed in the solar wind (e.g., Mavromichalaki et al., 1988; Neugebauer and 

Buti, 1990) and at the Earth's magnetopause (e.g., Chen and Kivelson, 1993).  Numerical 

modeling of the nonlinear evolution of the K-H instability in compressible MHD plasma can 

help us to understand further the underline processes of the formation of the nonlinear 

disturbances in the solar wind and at the Earth's magnetopause. 

 

Based on the eigen-value approximation (e.g., Press et al., 1988), linear wave analyses of the 

K-H instability with uniform growth rate in a sheared flow of finite thickness have been 
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carried out by Blumen (1970), Blumen et al. (1975), Drazin and Davey (1977) for neutral 

fluid and by Miura (1982), Miura and Pritchett (1982) for the MHD plasma.  It is shown that 

the unstable wave modes obtained from the eigen-value approximation depend on the 

boundary conditions of the eigen functions.  For gas dynamic K-H instability, when the 

propagation speed of the surface wave is supersonic with respect to the background medium, 

unstable eigen mode cannot be found under fixed boundary condition (Blumen, 1970; 

Blumen et al., 1975), but can be found under uniform boundary condition (Drazin and Davey, 

1977).  For K-H instability in the MHD plasma, when the velocity shear is large enough, no 

unstable eigen mode can be found under fixed boundary condition (Miura and Pritchett, 

1982).  However, to our knowledge, eigen mode under uniform boundary condition has not 

been studied before for the K-H instability in the MHD plasma.   
 
A brief review of the linear wave analyses of the K-H instability is given in Section 5.2.  

The non-local analysis based on the eigen-value approximation is reviewed in Section 5.3.  

Since it seems unrealistic to expect instabilities to grow uniformly in a non-uniform medium, 

we do not carry out the eigen-mode analysis to find out the unstable eigen mode under 

uniform boundary condition for the K-H instability in the MHD plasma.  Instead, we 

propose a new non-local linear wave analysis scheme in Section 5.4.  Based on the new 

analysis scheme, the instability in a non-uniform medium should have a non-uniform growth 

rate or damping rate, and the growth rate or damping rate should vary slowly with time.  

Thus, the numerical simulation is the best choice for studying both linear and nonlinear 

evolutions of K-H instabilities in the MHD plasma (e.g., Miura, 1982; 1984; 1987; 1990; 

1992; 1997; 1999; Wu, 1986; Manuel and Samson, 1993; Thomas and Winske, 1993; Otto 

and Fairfield, 2000, Lai and Lyu, 2005) 

 

Exercise 5.1 

Read section 11.4.3 in the following textbook and derive incompressible Kelvin-Helmholtz 

instability occurred at a tangential discontinuity (TD) due to velocity shear on two sides of 

the TD. 

Parks, G. K., Physics of Space Plasmas: An Introduction, Addison-Wesley Publ. Co., 

1991.  
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5.1. Linear analysis of K-H instability 

 

Linear wave analyses of the Kelvin-Helmholtz (K-H) instability at a tangential discontinuity 

(TD) of an ideal MHD plasma are reviewed and discussed in this section.  Basic equations 

of the ideal MHD plasma are as follows: 

(∂
∂ t
+V ⋅∇)ρ = −ρ∇⋅V              (5.1) 

ρ (∂
∂ t
+V ⋅∇)V = −∇(p+ B2

2µ0
)+ B ⋅∇B

µ0
          (5.2) 

(∂
∂ t
+V ⋅∇)p = −γ p∇⋅V              (5.3) 

(∂
∂ t
+V ⋅∇)B = −B∇⋅V+B ⋅∇V            (5.4) 

∇⋅B = 0                 (5.5) 

where γ = 5 / 3 .   The combination of equations (5.1) and (5.3) yields the adiabatic 

equation of state (∂ /∂ t+V ⋅∇)(pρ−γ )= 0 . 

 

We define the total pressure to be the sum of the thermal pressure and the magnetic pressure.  

That is 

ptot = p+
B2

2µ0
               (5.6) 

Equation (5.2) can be rewritten as 

ρ(∂
∂ t
+V ⋅∇)V = −∇ptot +

B ⋅∇B
µ0

           (5.2') 

The time derivative of equation (5.6) in the fluid rest frame is 

(∂
∂ t
+V ⋅∇)ptot = (

∂
∂ t
+V ⋅∇)p+ B

µ0
⋅[(∂
∂ t
+V ⋅∇)B]        (5.7) 

Substituting equations (5.3) and (5.4) into equation (5.7) yields 

(∂
∂ t
+V ⋅∇)ptot = −(γ p+

B2

µ0
)∇⋅V+ B

µ0
⋅ (B ⋅∇V)         (5.8) 

The background equilibrium state considered in this linear wave analysis is an MHD 

tangential discontinuity (TD).  We choose a coordinate system such that the normal 



Nonlinear Space Plasma Physics (I) [SS-8041] Chapter 5  by Ling-Hsiao Lyu  2008 Fall 
 

 5-4 

direction of the TD is along the x -axis and the TD is located at x = 0 .  The background 

equilibrium fields of the TD are functions of x  only.  There is no x -component magnetic 

field or velocity field in the equilibrium state of the TD, i.e., B0x = 0  and V0x = 0 .  As a 

result, the equilibrium state satisfies equations (5.1), (5.3), (5.4), (5.5) and (5.8).  Whereas, 

equations (5.6) and (5.2') at the equilibrium state yield  

p0tot = constant = p0 (x)+
B0
2 (x)
2µ0

= p0 (x)+
B0y
2 (x)+ B0z

2 (x)
2µ0

      (5.9) 

Taking the first derivative of equation (5.9) with respect to x  yields 

0 = dp0 (x)
dx

+
B0y(x)
µ0

dB0y(x)
dx

+
B0z (x)
µ0

dB0z (x)
dx

         (5.10) 

For convenience, we choose a moving frame such that the background equilibrium velocity 

field is along the y  direction, i.e., V0 = ŷV0y(x) .   

 

We have assumed that the background equilibrium fields are functions of x  only.  We 

further assumed that the linear wave is uniform in the z  direction.  Let A(x, y,t)  be a 

field variable, which consists of a non-uniform background equilibrium component A0 (x)  

and a small perturbation component δA(x, y,t) .  Namely,  

A(x, y,t)= A0 (x)+δA(x, y,t)             (5.11) 

where the order of magnitude O(δA / A) ≈ ε <<1. 

 

Substituting equation (5.11) into equations (5.2'), (5.3), (5.4), and (5.8), and ignoring the 

second order (ε 2 ) and the higher order terms, we can be obtain the following linearized 

equations, 

( ∂
∂ t
+V0y

∂
∂ y
)δVx = −

1
ρ0

∂δ ptot
∂ x

+
B0y
µ0ρ0

∂δBx

∂ y
         (5.12) 

( ∂
∂ t
+V0y

∂
∂ y
)δVy = −

1
ρ0

∂δ ptot
∂ y

+
B0y
µ0ρ0

∂δBy

∂ y
+
δBx

µ0ρ0

dB0y
dx

−δVx
dV0y
dx

    (5.13) 

( ∂
∂ t
+V0y

∂
∂ y
)δVz =

B0y
µ0ρ0

∂δBz
∂ y

+
δBx

µ0ρ0

dB0z
dx

         (5.14) 

( ∂
∂ t
+V0y

∂
∂ y
)δ p = −γ p0 (

∂δVx
∂ x

+
∂δVy
∂ y

)−δVx
dp0
dx

        (5.15) 
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( ∂
∂ t
+V0y

∂
∂ y
)δBx = B0y

∂δVx
∂ y

            (5.16) 

( ∂
∂ t
+V0y

∂
∂ y
)δBy = −B0y

∂δVx
∂ x

+δBx

dV0y
dx

−δVx
dB0y
dx

       (5.17) 

( ∂
∂ t
+V0y

∂
∂ y
)δBz = −B0z (

∂δVx
∂ x

+
∂δVy
∂ y

)+ B0y
∂δVz
∂ y

−δVx
dB0z
dx

      (5.18) 

( ∂
∂ t
+V0y

∂
∂ y
)δ ptot
ρ0

= −(γ p0
ρ0

+
B0
2

µ0ρ0
)(∂δVx
∂ x

+
∂δVy
∂ y

)+
B0y
µ0ρ0

(B0y
∂δVy
∂ y

+ B0z
∂δVz
∂ y

+δBx

dV0y
dx

)  

                 (5.19) 

By eliminating δVx , δVy , δVz , δBx , δBy , δBz , the above equations (5.12)~(5.19) can be 

rewritten into the following differential equation of δ ptot , 

−[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
][−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CS0

2 CI 0y
2 ∂ 2

∂ y2
]∂

2δ ptot
∂ x2

+{2
dV0y
dx

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)−

dCI 0y
2

dx
∂ 2

∂ y2
+
1
ρ0

dρ0
dx
[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]}

[−(CS0
2 +CA0

2 )( ∂
∂ t
+V0y

∂
∂ y
)2 +CS0

2 CI 0y
2 ∂ 2

∂ y2
]∂δ ptot
∂ x

−{( ∂
∂ t
+V0y

∂
∂ y
)4 + ∂ 2

∂ y2
[−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CI 0y

2 CS0
2 ∂ 2

∂ y2
]}

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δ ptot = 0

  (5.20) 

where  

CI 0y
2 (x)= B0y

2 (x) /µ0ρ0 (x) ,            (5.21) 

CS0
2 (x)= γ p0 (x) / ρ0 (x) ,             (5.22) 

CA0
2 (x)= [By0

2 (x)+ Bz0
2 (x)] /µ0ρ0 (x) ,          (5.23) 

and γ = 5 / 3 .  Here CI 0y(x)  is the phase velocity of MHD intermediate-mode, which 

propagates along the y  direction.  Derivation of equation (5.20) can be found in the 

Appendix of Chapter 5. 

 

5.3 K-H instabilities with uniform growth  

 
Although, it seems unrealistic to expect instabilities to grow uniformly in a non-uniform 

medium, the equations (5.20) are commonly solved by means of an eigen-value 
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approximation, in which both the wave frequency and the wave growth rate (or damping rate) 

are assumed to be uniform for a given tangential wavelength 

€ 

2π / kt  (e.g., Blumen, 1970; 

Blumen et al., 1975, Drazin and Davey, 1977; Miura, 1982; Miura and Pritchett, 1982).  As 

a result, for each 

€ 

kt , a linear wave with non-uniform wave amplitude, which satisfies a 

unique profile along the x direction, is obtained.  The profile of the wave amplitude is called 

the corresponding eigen function of the resulting eigen frequency.  A brief review of the 

non-local analysis based on the eigen-value approximation is given below. 

 

For linear waves with a uniform growth rate, or damping rate, the small perturbation δ A  

with wavelength 2π / kt  can be rewritten into the following form 

δ A(x, y,t)=δ A f (x)exp[i (kt y−ω t)]           (5.24) 

Substituting equation (5.24) into equations (5.20), it yields 

1
kt
2
d 2 f (x)
dx2

−
1
kt

d f (x)
dx

R0 (x,ω,kt )+ f (x)F0 (x,ω,kt )= 0       (5.25) 

where  

R0 (x,ω,kt )=

1
kt
d
dx

ρ0 (x){[
ω
kt
−V0y(x)]

2 −CI 0y
2 (x)}

$
%
&

'
(
)

ρ0 (x){[
ω
kt
−V0y(x)]

2 −CI 0y
2 (x)}

       (5.26) 

F0 (x,ω,kt )=
{[ω
kt
−V0y(x)]

2 −CF0y
2 (x)}{[ω

kt
−V0y(x)]

2 −CSL0y
2 (x)}

[ω
kt
−V0y(x)]

2[CF0y
2 (x)+CSL0y

2 (x)]−CF0y
2 (x)CSL0y

2 (x)
    (5.27) 

CF0y
2 (x)= 1

2
CA0
2 (x)+CS0

2 (x)+ [CA0
2 (x)+CS0

2 (x)]2 − 4CI 0y
2 (x)CS0

2 (x){ } ,   (5.28) 

CSL0y
2 (x)= 1

2
CA0
2 (x)+CS0

2 (x)− [CA0
2 (x)+CS0

2 (x)]2 − 4CI 0y
2 (x)CS0

2 (x){ } ,   (5.29) 

and CI 0y(x) , CS0 (x) , CA0 (x)  are given in equations (5.21), (5.22), (5.23).  Here CF0y(x) , 

CI 0y(x) , and CSL0y(x)  are the phase velocities of MHD fast-mode, intermediate-mode, and 

slow-mode waves, respectively, which propagate along the y  direction.  

 

For gas dynamics, B0y(x)= B0z (x)= 0 , and δ ptot (x)=δ p(x) . Thus, equations (5.25) is 

reduced to  
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1
kt
2
d 2 f (x)
dx2

−
1
kt

d f (x)
dx

Rn0 (x,ω,kt )+ f (x)Fn0 (x,ω,kt )= 0       (5.25n) 

where 

Rn0 (x,ω,kt )=

1
kt
d
dx
{ρ0 (x)[

ω
kt
−V0y(x)]

2}

ρ0 (x)[
ω
kt
−V0y(x)]

2
         (5.26n) 

€ 

Fn0(x,ω,kt ) =
[ω
kt
−V0y (x)]

2 −CS0
2

CS0
2            (5.27n) 

Note that equation (5.25) is similar to the equation (23) in the paper by Miura and Pritchett 

(1982).  Equation (5.25n) is similar to the equation (7) in the paper by Blumen (1970).  

But the equation (7) in the paper by Blumen (1970) is derived under the assumption of 

uniform background density. 

 

Equations (5.25n) and (5.25) can be solved based on an eigen-value approximation (e.g., 

Press et al., 1988), in which the eigen value 

€ 

ω =ωr + iω i  is assumed to be uniform but the 

corresponding eigen function is non-uniform along the x direction (e.g., Blumen, 1970; 

Blumen et al., 1975, Drazin and Davey, 1977; Miura, 1982; Miura and Pritchett, 1982).  

Namely, the second order ordinary differential equations (5.25) and (5.25n) with a uniform 

eigen value 

€ 

ω =ωr + iω i , can be rewritten into a system of first order ordinary differential 

equations (ODEs), i.e., 

€ 

dy1(x)
dx

=G[x,y1(x),y2(x),y3(x);kt ]          (5.30) 

€ 

dy2(x)
dx

= y1(x)               (5.31) 

€ 

dy3(x)
dx

= 0                (5.32) 

where 

€ 

y1(x) = d f (x) /dx , 

€ 

y2(x) = f (x) , 

€ 

y3(x) =ω , and for K-H instability in MHD plasma 

€ 

G(x,y1,y2,y3;kt ) = y1ktR0(x,y3,kt ) − y2kt
2F0(x,y3,kt )       (5.33) 

for K-H instability in gas dynamics,  

€ 

G(x,y1,y2,y3;kt ) = y1ktRn0(x,y3,kt ) − y2kt
2Fn0(x,y3,kt )        (5.33n)  

For a given 

€ 

kt , we can use the standard shooting method (e.g., Press et al., 1988) to find a set 

of eigen-mode solutions, which satisfy the fixed boundary conditions that 

€ 

y2(xL ) = y2(xR ) = 0  (e.g., Blumen, 1970; Blumen et al., 1975; Miura and Pritchett, 1982), 
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where 

€ 

xL  and 

€ 

xR  are the left and the right boundaries of the system, respectively.  

Likewise, for a given 

€ 

kt , one can use the standard shooting method to find a set of 

eigen-mode solutions, which satisfy the uniform boundary conditions that 

€ 

y1(xL ) = y1(xR ) = 0  (e.g., Drazin and Davey, 1977).  To our knowledge, the eigen-mode 

solutions of K-H instability in MHD plasma, which satisfy the uniform boundary conditions 

with 

€ 

y1(xL) = y1(xR ) = 0 , have not been studied before.   

 

However, in our opinion, the uniform-growth-rate assumption used in equation (5.32), is 

unlikely to be fulfilled in a non-uniform medium, unless the initial perturbation is chosen 

exactly equal to one of the eigen functions, or equal to a linear combinations of the eigen 

functions.  Since there is only one eigen mode for each given 

€ 

kt , if the initial perturbations, 

with tangential wavelength equal to 2π / kt , but with a perturbation profile, f (x) , different 

from the corresponding eigen function, it would be impossible to decompose this initial 

profile into a linear combination of the eigen functions.  Indeed, only perturbations with 

uniform growth rate can be decomposed into a linear combination of these eigen functions.  

Note that, even if the initial perturbations are chosen exactly equal to a linear combinations of 

these eigen modes, the fastest growing eigen mode might not be the dominate wave mode in 

the system, unless the system could keep in a linear state before the most unstable eigen 

mode is fully developed, because the concept of superimposition of wave modes is valid only 

for linear wave analysis.   

 

5.4 K-H instabilities with non-uniform growth rate 

 

We propose a new non-local or global analysis in this section to study K-H instability with 

non-uniform growth rate.  The proposed non-local analysis procedure is applicable to other 

instabilities in a non-uniform medium (e.g., Lui et al., 1995; Yoon et al., 1996).  

 

For linear waves with a non-uniform growth rate, or damping rate, the small perturbation 

δ A  with wavelength 2π / kt  can be rewritten into the following form 

δ A(x, y,t)=δ A f (x)exp{i[kt y−ω (x) t]}          (5.34) 

where ω(x)=ωr (x)+ iωi (x) . 

 

Substituting (5.34) into equation (5.20), it yields 
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1
kt
2 [
d 2 f
dx2

− if d
2ω
dx2

t −2i d f
dx

dω
dx

t − f (dω
dx
)2 t 2 ]

−
1
kt
2 [
2
dV0y
dx

(V0y −
ω
kt
)−

dCI 0y
2

dx

(V0y −
ω
kt
)2 −CI 0y

2
+
1
ρ0

dρ0
dx
][d f
dx

− if dω
dx

t]

+
[(V0y −

ω
kt
)4 − (CS0

2 +CA0
2 )(V0y −

ω
kt
)2 +CS0

2 CI 0y
2 ]

[(CS0
2 +CA0

2 )(V0y −
ω
kt
)2 −CS0

2 CI 0y
2 ]

f = 0

      (5.35) 

For | tωi |<<1 , equation (5.35) can be approximately rewritten into the following form 

1
kt
2
d 2 f
dx2

−
1
kt
2 [
2
dV0y
dx

(V0y −
ω
kt
)−

dCI 0y
2

dx

(V0y −
ω
kt
)2 −CI 0y

2
+
1
ρ0

dρ0
dx
]d f
dx

+
[(V0y −

ω
kt
)2 −CF0y

2 ][(V0y −
ω
kt
)2 −CSL0y

2 ]

(CF0y
2 +CSL0y

2 )(V0y −
ω
kt
)2 −CF0y

2 CSL0y
2

f ≈ 0

       (5.36) 

where CF0y(x) , CI 0y(x) , and CSL0y(x)  are the phase velocities of MHD fast-mode, 

intermediate-mode, and slow-mode waves, respectively, which propagate along the y  

direction.  They have been defined in equations (5.28), (5.21), and (5.29), respectively.  

 

By solving equation (5.36), we can obtain a non-uniform solution of ω(x)  for a given set of 

kt , f (x) , V0y(x) , CF0y(x) , CI 0y(x) , and CSL0y(x) .  Solution of equation (5.36) is only 

good for | tωi |<<1 .  After a time period t0 , where max(| t0ωi |) ≈ 0.1 , we should choose 

the latest profile, fnew (x)= f (x)exp[ωi (x)t0 ] , as a new starting point to solve ω(x)  for the 

proceeding time period.  One can repeat this procedure as long as the wave amplitude is of 

small amplitude, so that the concept of superimposition of wave modes is valid in this linear 

wave analysis.  The proposed non-local linear wave analysis procedure is good for studying 

instabilities in a non-uniform medium with non-uniform growth rate or damping rate, which 

varies slowly with time.   

 

Exercise 5.2 

Show that for uniform background medium at region 1 ( x < 0 ) and region 2 ( x > 0 ) and 
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with zero-thickness transition layer at x = 0 , equation (5.36) is reduced to 

(ρ01 + ρ02 )ω
2 −2ω(ρ01V0y1 + ρ02V0y2 )+ ρ01(V0y1

2 −CI 0y1
2 )+ ρ02 (V0y2

2 −CI 0y2
2 )= 0   (5.37) 

K-H instability can take place if  

(V0y2 −V0y1)
2 >CI 0y1

2 (ρ01
ρ02

+1)+CI 02
2 (ρ02

ρ01
+1)         (5.38) 

which is consistent with Chandrasekhar’s results (Chandrasekhar, 1961). 

 

Exercise 5.3 

Collect observational data of magnetopause crossing during northward IMF (Interplanetary 

Magnetic Field).  Find evidence of Kelvin-Helmholtz (K-H) instability at Earth’s 

magnetopause.  Find evidence of dawn-dusk asymmetric development of the K-H 

instability.  Qualitatively determine ionospheric feedback effect on the K-H instability 

occurred at Earth’s magnetopause.  

 

Exercise 5.4 

Study generation of Kelvin-Helmholtz (K-H) instability in discrete auroral arcs.  

Determine differences in evolution and polarization direction of vortexes in active auroral 

arcs observed in northern hemisphere and those observed in southern hemisphere.   
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Appendix of Chapter 5: Derivation of equation (5.20) 

 

Applying the differential operator ( ∂
∂ t
+V0y

∂
∂ y
)  to equations (5.12), (5.13), (5.14), (5.17) 

and (5.19), then substituting equation (5.16) into the resulting equations to eliminate 

( ∂
∂ t
+V0y

∂
∂ y
)δBx , it yields  

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δVx = −

1
ρ0
( ∂
∂ t
+V0y

∂
∂ y
)∂δ ptot
∂ x

       (5.12a) 

( ∂
∂ t
+V0y

∂
∂ y
)2δVy = −

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)δ ptot
ρ0

+
B0y
µ0ρ0

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)δBy

+[
B0y
µ0ρ0

dB0y
dx

∂
∂ y

−
dV0y
dx

( ∂
∂ t
+V0y

∂
∂ y
)]δVx

    (5.13a) 

( ∂
∂ t
+V0y

∂
∂ y
)2δVz =

B0y
µ0ρ0

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)δBz +

B0y
µ0ρ0

dB0z
dx

∂δVx
∂ y

     (5.14a) 

( ∂
∂ t
+V0y

∂
∂ y
)2δBy = −B0y(

∂
∂ t
+V0y

∂
∂ y
)∂δVx
∂ x

+[
dV0y
dx

B0y
∂
∂ y

−
dB0y
dx

( ∂
∂ t
+V0y

∂
∂ y
)]δVx  (5.17a) 

( ∂
∂ t
+V0y

∂
∂ y
)2 δ ptot

ρ0
= −(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)∂δVx
∂ x

−(CS0
2 +CA0

2 −CI 0y
2 ) ∂

∂ y
( ∂
∂ t
+V0y

∂
∂ y
)δVy +

B0y
µ0ρ0

B0z (
∂
∂ t
+V0y

∂
∂ y
)∂δVz
∂ y

+
dV0y
dx

CI 0y
2 ∂δVx

∂ y

 (5.19a) 

Applying the differential operator ( ∂
∂ x
)  to equation (5.12a), it yields 

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]∂δVx
∂ x

= −[2( ∂
∂ t
+V0y

∂
∂ y
)
dV0y
dx

∂
∂ y

−
dCI 0y

2

dx
∂ 2

∂ y2
]δVx

−
1
ρ0
( ∂
∂ t
+V0y

∂
∂ y
)∂

2δ ptot
∂ x2

−
1
ρ0

dV0y
dx

∂
∂ y

∂δ ptot
∂ x

+
1
ρ0
( 1
ρ0

dρ0
dx
)( ∂
∂ t
+V0y

∂
∂ y
)∂δ ptot
∂ x

  (5.12b)  

Applying the differential operator [( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]  to equation (5.12b) then 

substituting equation (5.12a) into the resulting equation to eliminate 

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δVx , it yields 
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[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]2 ∂δVx
∂ x

= −
1
ρ0
( ∂
∂ t
+V0y

∂
∂ y
)[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]∂

2δ ptot
∂ x2

+
1
ρ0
{
dV0y
dx

∂
∂ y
[( ∂
∂ t
+V0y

∂
∂ y
)2 +CI 0y

2 ∂ 2

∂ y2
]−
dCI 0y

2

dx
( ∂
∂ t
+V0y

∂
∂ y
) ∂

2

∂ y2
}∂δ ptot

∂ x

+
1
ρ0
( 1
ρ0

dρ0
dx
)( ∂
∂ t
+V0y

∂
∂ y
)[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]∂δ ptot
∂ x

 (5.12c) 

Applying the differential operator ( ∂
∂ t
+V0y

∂
∂ y
)  to equation (5.13a), then substituting 

equation (5.17a) into the resulting equation to eliminate ( ∂
∂ t
+V0y

∂
∂ y
)2δBy , and then 

substituting equation (5.12a) into the resulting equation to eliminate 

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δVx , it yields 

( ∂
∂ t
+V0y

∂
∂ y
)3δVy = −

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)2 δ ptot

ρ0
−CI 0y

2 ∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)∂δVx
∂ x

+
1
ρ0

dV0y
dx

( ∂
∂ t
+V0y

∂
∂ y
)∂δ ptot
∂ x

   (5.13b) 

Applying the differential operator ( ∂
∂ t
+V0y

∂
∂ y
)2  to equation (5.18), then substituting 

equation (5.14a) into the resulting equation to eliminate ( ∂
∂ t
+V0y

∂
∂ y
)2δVz , and then 

substituting equation (5.12a) into the resulting equation to eliminate 

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δVx , it yields 

( ∂
∂ t
+V0y

∂
∂ y
)[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δBz = −B0z (

∂
∂ t
+V0y

∂
∂ y
)2 ∂δVx

∂ x

−B0z
∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)2δVy +

1
ρ0

dB0z
dx

( ∂
∂ t
+V0y

∂
∂ y
)∂δ ptot
∂ x

    (5.18a) 

Applying the differential operator ( ∂
∂ t
+V0y

∂
∂ y
)  to equation (5.18a) then substituting 

equation (5.13b) into the resulting equation to eliminate ( ∂
∂ t
+V0y

∂
∂ y
)3δVy , it yields 
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( ∂
∂ t
+V0y

∂
∂ y
)2[( ∂

∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δBz

= −B0z (
∂
∂ t
+V0y

∂
∂ y
)[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]∂δVx
∂ x

+B0z
∂ 2

∂ y2
( ∂
∂ t
+V0y

∂
∂ y
)2 δ ptot

ρ0

+
1
ρ0
[dB0z
dx

( ∂
∂ t
+V0y

∂
∂ y
)2 − B0z

dV0y
dx

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)]∂δ ptot

∂ x

      (5.18b)  

Applying the differential operator ( ∂
∂ t
+V0y

∂
∂ y
)  to equation (5.19a) then substituting 

equation (5.14a) into the resulting equation to eliminate ( ∂
∂ t
+V0y

∂
∂ y
)2δVz , it yields 

( ∂
∂ t
+V0y

∂
∂ y
)3 δ ptot

ρ0
= −(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 ∂δVx

∂ x

+[ B0z
µ0ρ0

dB0z
dx

CI 0y
2 ∂ 2

∂ y2
+
dV0y
dx

CI 0y
2 ∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)]δVx

−(CS0
2 +CA0

2 −CI 0y
2 ) ∂

∂ y
( ∂
∂ t
+V0y

∂
∂ y
)2δVy +

B0z
µ0ρ0

CI 0y
2 ∂ 2

∂ y2
( ∂
∂ t
+V0y

∂
∂ y
)δBz

   (5.19b)  

Applying the differential operator ( ∂
∂ t
+V0y

∂
∂ y
)  to equation (5.19b) then substituting 

equation (5.13b) into the resulting equation to eliminate ( ∂
∂ t
+V0y

∂
∂ y
)3δVy , it yields 

( ∂
∂ t
+V0y

∂
∂ y
)4 δ ptot

ρ0

= [−(CS0
2 +CA0

2 )( ∂
∂ t
+V0y

∂
∂ y
)3 + (CS0

2 +CA0
2 −CI 0y

2 )CI 0y
2 ∂ 2

∂ y2
( ∂
∂ t
+V0y

∂
∂ y
)]∂δVx
∂ x

+[ B0z
µ0ρ0

dB0z
dx

CI 0y
2 ∂ 2

∂ y2
( ∂
∂ t
+V0y

∂
∂ y
)+
dV0y
dx

CI 0y
2 ∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)2 ]δVx

+(CS0
2 +CA0

2 −CI 0y
2 ) ∂

2

∂ y2
( ∂
∂ t
+V0y

∂
∂ y
)2 δ ptot

ρ0

−
1
ρ0
(CS0

2 +CA0
2 −CI 0y

2 )
dV0y
dx

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)∂δ ptot
∂ x

+
B0z
µ0ρ0

CI 0y
2 ∂ 2

∂ y2
( ∂
∂ t
+V0y

∂
∂ y
)2δBz

  (5.19c)  

Applying the differential operator [( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]  to equation (5.19c), then 
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substituting equation (5.18b) into the resulting equation to eliminate 

( ∂
∂ t
+V0y

∂
∂ y
)2[( ∂

∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δBz , and then substituting equation (5.12a) into the 

resulting equation to eliminate [( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δVx , it yields 

( ∂
∂ t
+V0y

∂
∂ y
)2{( ∂

∂ t
+V0y

∂
∂ y
)4 + ∂ 2

∂ y2
[−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CI 0y

2 CS0
2 ∂ 2

∂ y2
}δ ptot
ρ0

= [−(CS0
2 +CA0

2 )( ∂
∂ t
+V0y

∂
∂ y
)3 +CS0

2 CI 0y
2 ∂ 2

∂ y2
( ∂
∂ t
+V0y

∂
∂ y
)]

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]∂δVx
∂ x

+
1
ρ0

dV0y
dx

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)[−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CS0

2 CI 0y
2 ∂ 2

∂ y2
]∂δ ptot
∂ x

 (5.19d) 

Applying the differential operator [( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]  to equation (5.19d) then 

substituting equation (5.12c) into the resulting equation to eliminate 

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]2 ∂δVx
∂ x

, it yields 

−
1
ρ0
[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]

( ∂
∂ t
+V0y

∂
∂ y
)2[−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CS0

2 CI 0y
2 ∂ 2

∂ y2
]∂

2δ ptot
∂ x2

+
1
ρ0
{2
dV0y
dx

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)−

dCI 0y
2

dx
∂ 2

∂ y2
+
1
ρ0

dρ0
dx
[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]}

( ∂
∂ t
+V0y

∂
∂ y
)2[−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CS0

2 CI 0y
2 ∂ 2

∂ y2
]∂δ ptot
∂ x

−
1
ρ0
{( ∂
∂ t
+V0y

∂
∂ y
)4 + ∂ 2

∂ y2
[−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CI 0y

2 CS0
2 ∂ 2

∂ y2
]}

( ∂
∂ t
+V0y

∂
∂ y
)2[( ∂

∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δ ptot = 0

  (5.19e) 

Applying the integration operator ρ0 (
∂
∂ t
+V0y

∂
∂ y
)−2  to equation (5.19e) yields 
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−[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]

[−(CS0
2 +CA0

2 )( ∂
∂ t
+V0y

∂
∂ y
)2 +CS0

2 CI 0y
2 ∂ 2

∂ y2
]∂

2δ ptot
∂ x2

+{2
dV0y
dx

∂
∂ y
( ∂
∂ t
+V0y

∂
∂ y
)−

dCI 0y
2

dx
∂ 2

∂ y2
+
1
ρ0

dρ0
dx
[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]}

[−(CS0
2 +CA0

2 )( ∂
∂ t
+V0y

∂
∂ y
)2 +CS0

2 CI 0y
2 ∂ 2

∂ y2
]∂δ ptot
∂ x

−{( ∂
∂ t
+V0y

∂
∂ y
)4 + ∂ 2

∂ y2
[−(CS0

2 +CA0
2 )( ∂

∂ t
+V0y

∂
∂ y
)2 +CI 0y

2 CS0
2 ∂ 2

∂ y2
]}

[( ∂
∂ t
+V0y

∂
∂ y
)2 −CI 0y

2 ∂ 2

∂ y2
]δ ptot = 0

   (5.20) 

 

 


