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Abstract In the diffuse aurora, magnetospheric electrons, initially precipitated from the inner plasma
sheet via wave-particle interaction processes, degrade in the atmosphere toward lower energies, and
produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating
electrons of magnetospheric origin can also be additionally reflected back into the magnetosphere, leading
to a series of multiple reflections by the two magnetically conjugate atmospheres that can greatly impact the
initially precipitating flux at the upper ionospheric boundary (700–800 km). The resultant population of
secondary and primary electrons cascades toward lower energies and escape back to the magnetosphere.
Escaping upward electrons traveling from the ionosphere can be trapped in the magnetosphere, as they
travel inside the loss cone, via Coulomb collisions with the cold plasma, or by interactions with various plasma
waves. Even though this scenario is intuitively transparent, this magnetosphere-ionosphere coupling
element is not considered in any of the existing diffuse aurora research. Nevertheless, as we demonstrate in
this letter, this process has the potential to dramatically affect the formation of electron precipitated fluxes in
the regions of diffuse auroras.

1. Why Are Diffuse Aurora Regions Important?

The diffuse aurora receives the majority (about 75% [Newell et al., 2009]) of the total kinetic energy (precipi-
tating electrons and ions) that enters the atmosphere from the magnetosphere driven by wave-particle inter-
action (WPI) processes. Electron fluxes with energies of 0.1–30 keV dominate the auroral energy input
compared to the energy corresponding to precipitating ions [Hardy et al., 1989].

Electron precipitation into the ionosphere at all latitudes is the result of magnetospheric processes within the
relevant topological regions of the magnetosphere. Therefore, precipitating fluxes and energies are strongly
connected with global electrodynamics [Wolf et al., 2007], with processes that form the plasmasphere [Huba
and Krall, 2013], the ring current [Ebihara et al., 2005], radiation belt seed populations [Khazanov et al., 2004],
and heavy ion outflows from the ionosphere [Strangeway et al., 2005]. The outflow of heavy ions from the
ionosphere ultimately connects the aforementioned regions with magnetic reconnection in Geospace, and
in particular, with electrons and ion populations in the central plasma sheet. That is why closing the
magnetosphere-ionosphere (MI) coupling loop related to the electron aurora precipitating processes is
extremely important.

2. What Is Known?

It is generally accepted that the diffuse electron aurora is generated by WPI processes in the Earth’s plasma
sheet [e.g., Belmont et al., 1984; Roeder and Koons, 1989; Johnstone et al., 1993; Nishimura et al., 2011]. Among
the WPI processes that are the major drivers of diffuse aurora are whistler mode chorus waves and electron
cyclotron harmonic (ECH) waves resonating with electrons that have energies from approximately hundreds
of eV up to tens of KeV [Lui et al., 1977; Anderson and Maeda, 1977; Ni et al., 2008;Meredith et al., 2009]. Which
type of wave, whistler mode chorus or ECH, is more important in generating the diffuse aurora is still the sub-
ject of debate.Meredith et al. [1999] reported on pancake particle pitch angle distributions, which along with
spacecraft wave observations presented byMeredith et al. [2009] led Thorne et al. [2010] to argue that whistler
chorus waves are the most significant contributor in the formation of electron precipitation in the diffuse
aurora regions.

3. How Is Diffuse Aurora Studied?

There is no unified theoretical description for the formation of electron distribution functions in the region of
diffuse aurora that includes self-consistent MI coupling processes between the magnetosphere and both
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magnetically conjugate ionospheric regions. Historically, however, two groups of studies have been per-
formed about the region that is typically called the diffuse aurora. The ionospheric group of studies focused
primarily on electron precipitation into the upper atmosphere assuming some upper boundary conditions for
the electron distribution function at altitudes of several hundred kilometers above of the F2 region. This com-
munity considered the details of precipitating flux degradation in the atmosphere, the production of second-
ary electrons, optical emissions resulting from the precipitation, and energy deposition to the thermal
ionospheric electrons. Monte Carlo simulations [Solomon, 1993], two-stream calculations [Banks et al.,
1974], and angular-dependent or multistream calculations [Strickland et al., 1976; Stamnes, 1981;
Lummerzheim et al., 1989] have been successfully applied to aurora electron transport at ionospheric alti-
tudes. These studies, however, did not consider the magnetospheric processes that drive the precipitation
electron distributions to begin with, nor did they consider the effect of the magnetically conjugate iono-
spheric regions in the process of altering the initial and forming the observed electron distribution function.

On the other hand, magnetospheric studies of diffuse aurora focused on the analysis of WPI processes that
drive the precipitating electron distribution functions to begin with, and the relative importance of both
whistler mode chorus waves and ECH waves as mechanisms for plasma sheet electron precipitation [e.g.,
Kennel et al., 1970; Horne et al., 2003; Meredith et al., 2009; Thorne et al., 2010]. Thus, both the ionospheric
and magnetospheric communities have so far studied the diffuse aurora electron precipitation processes
in their individual and separate domains and implicitly assumed that electron precipitation forms only via
magnetospheric processes. In other words, the assumption has been that the observed diffuse aurora is
solely driven from above, from magnetospheric altitudes.

4. What Is Missing and What Should Be Done?

As will be demonstrated in this letter, the MI coupling electron dynamics can significantly modify the inten-
sity of the spectrum of diffuse aurora electrons during their initial precipitation from the inner plasma sheet
(via WPI processes) to the ionosphere and back and forth after that. Figure 1 (taken from Khazanov et al.
[2015]) illustrates the MI coupling electron diffuse aurora phenomena that was completely missing from pre-
vious considerations in aforementioned papers. Wave-particle interactions (orange cloud regions) scatter the
inner plasma sheet electrons into the loss cone and initiate auroral precipitation into both the northern and
southern ionospheres as seen by the thick red and yellow arrows pointing toward both ionospheres. This pro-
cess can be considered as the first step in the formation of the electron distribution function in the region of
diffuse aurora.

Figure 1. Scenario of MI coupling simulations by STET code.
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The high-energy plasma sheet electrons that are scattered into the loss cone by WPI processes and precipi-
tate to the ionosphere lose their energy due to nonelastic collisions with the neutral atmosphere and
produce secondary electrons (energies less than about 0.5–0.6 keV). These initial auroral precipitation
electrons loose their energy upon exciting and ionizing atmospheric neutrals, and producing new secondary
electrons, do not disappear into the ionosphere completely but rather escape to the magnetosphere as seen
by the red, yellow, and blue arrows pointing toward the magnetosphere. Khazanov et al. [2014] demon-
strated that 15–40% of the total aurora energy returns back to the magnetosphere and the conjugate
ionosphere. Some of the escaping electrons are trapped in the inner plasma sheet via Coulomb collision or
wave-particle interactions (orange and blue clouds) that scatter them out of the loss cone. Other escaping
electrons (primary and secondary) can reach the conjugate ionosphere along closedmagnetic field lines (thin
red and yellow arrows pointing toward the ionospheres) and continuously ionize the upper atmosphere at
the conjugate locations. After the first bounce electrons that are precipitating having originated in the
conjugate ionosphere are also following the same cycle as the primary precipitating electrons of magneto-
spheric origin, and a portion of them can be again reflected back to the original ionosphere along closed field
lines, continuing the collisional processes with the neutral atmosphere. This reflection process is repeated
multiple times in the diffuse aurora regions of both magnetically conjugate points and, as we demonstrate
below leads to a dramatic enhancement of the intensity of electron fluxes which ends up stabilizing between
the ionosphere and magnetosphere altitudes.

Thus, multiple atmospheric reflections of the primary WPI driven magnetospheric electrons precipitating into
bothmagnetically conjugate regions, and following up on their energy redistribution in the MI system via col-
lisional and WPI processes, should be considered as Step 2 (driven from below) in the formation of electron
fluxes that precipitate into the Northern and Southern Hemispheres in the regions of diffuse aurora.
Therefore, in the approach that we present in this letter, the MI system is considered as one merged unit with
linked transport processes of precipitated, secondary, reflected, bounced, etc., electrons.

5. Kinetic Formalism

We use the SuperThermal Electron Transport (STET) code [see Khazanov et al., 2015] to simulate the scenario
discussed in the previous section and illustrated by Figure 1. STET solves a kinetic Boltzmann-Landau
equation for the superthermal electrons:

Figure 2. Regions where we solve the kinetic equation (1) using different pitch angle variables (2).
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where the electron number flux (Φ) is a function of time (t), s is the distance along the magnetic field, μ is the
cosine of the pitch angle, and E is the electron energy. The right-hand side represents the source term Q due
to photoionization and the source and loss term hSi due to the different collisional processes. The collision
term includes elastic collisions between charged and neutral particles, all nonelastic collisions between elec-
trons and neutrals, and wave-particle interactions between electrons and the whistler mode chorus waves
and ECH waves. STET can provide a full energy distribution of superthermal electrons along closed magnetic
field lines without interruption between the magnetosphere and the ionosphere, thus providing a useful tool
to understand the MI coupling dynamics in the regions of diffuse electron aurora. STET is a well-established
code developed and improved in the past few decades [Khazanov et al., 2014, 2015, 1994; Khazanov, 1979,
2011]. Khazanov [2011] and Khazanov et al. [2014, 2015] provide extensive details on the current STET code.

Further, as has been discussed by Khazanov et al. [2014, 2015, 2016a, 2016b], we transform equation (1) from
(μ, s) to (μ0, s) variables, where

μ0 sð Þ ¼ μ
μj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�B0=B sð Þ 1� μ2ð Þ

q
(2)

with B0 and μ0 denoting the magnetic field and the cosine of the pitch angle at the magnetic equator of the
flux tube. After the change of variables, Φ(μ0, s) now becomes a slowly varying function with s that greatly
reduces computational effects associated with approximation errors of the derivatives [Khazanov, 2011].
For a given superthermal electron (SE) energy, E, the Figure 2 shows the region of the solution of equation
(1) in the old and new variables that is defined by equation (2). The loss cone area in this figure is shown
in blue, and the trapped zone with the trajectories of bouncing particles is shown in yellow.

Figure 3. Downward electron flux from 1 eV to 10 keV at 800 km for L = 4.6 and L = 6.8 calculated for three different scenar-
ios as described in the text.
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Khazanov et al. [2015] initiated electron precipitation from the magnetosphere to the ionosphere via interac-
tion with whistler and ECH waves within the Earth’s plasma sheet. The boundary conditions were set up in
velocity space above 600 eV and in the loss cone (see red lines in Figure 2.). It was also assumed that there
is no communication between the initially trapped magnetospheric electrons (yellow region in Figure 2)
and the electrons with the same energies that return through the loss cone (blue area in the same figure)
after reflection and degradation in both magnetically conjugate ionospheres. Now we are removing these
assumptions by allowing atmospheric reflection of magnetospheric electrons to communicate back and
forth between the loss cone and trapped zones and to the magnetically conjugate ionospheric regions
[Khazanov et al., 2016a]. We also naturally demonstrate the role of the multiple atmospheric electron reflec-
tions that were introduced by Khazanov et al. [2016b] and the role of magnetically conjugate atmospheric
regions based on the first principles of the solution of the Landau-Boltzmann equation (1) in the entire MI
coupling system.

To demonstrate howMI coupling of SE influence on the electron distribution function, as in the previous work
by Khazanov et al. [2015], we assume the trapped electron fluxes to exhibit Maxwellian distribution

Φtrap Eð Þ ¼ AE exp �E=E0ð Þ (3)

with the normalization factor A=103, and the characteristic energy of the trapped plasma sheet electrons
E0 = 1 KeV. These parameters are selected to be identical for the two L shells 4.6 and 6.8 that were simulated
in this manuscript. Plasma and wave parameters for these specific distances are selected as follows:

for L ¼ 4:6 : nc ¼ 21:5 cm�3; Tc ¼ 4 eV; Bo ¼ 312 nT

for L ¼ 4:8 : nc ¼ 12:0 cm�3; Tc ¼ 10 eV; Bo ¼ 92:5 nT’

where the index c denotes cold plasma. As in Khazanov et al. [2015], the amplitudes of the magnetic field for
the lower band chorus (LBC) and upper band chorus (UBC) whistler waves were taken to be 10 pT and
1mVm�1 for ECH waves. The same wave amplitudes were used for both L shell values, and they are within
the range of the observed values in the CRRES wave database [Meredith et al., 2009]. We assumed that LBC

Figure 4. Upward and downward integrated electron fluxes calculated for the same scenarios as Figure 3.
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waves are located within�15° of the magnetic equator, while UBC and ECH waves were within�10° and�3°
of the magnetic equator, respectively [Ni et al., 2011]. The pitch angle diffusion coefficients for these waves
are the same that were used in Khazanov et al. [2015].

6. Results and Summary

The MI simulation results presented below are performed using the STET code as formulated by Khazanov
et al. [2014–2016]. Figure 3 shows downward fluxes at the altitude of 800 km in the Northern Hemisphere
for L=4.6 (left window) and L= 6.8 (right window). We compare these fluxes (red lines) with different MI cou-
pling conditions, when the Southern Hemisphere was disconnected from the simulations (blue lines), as well
as with completely decoupled ionosphere and magnetosphere system (green lines). Figure 4 shows the total
downward (solid bars) and upward (dashed bars) directional energy fluxes at 800 km integrated from 1 eV to
10 keV for L=4.6 (left) and L= 6.8 (right). These energy fluxes are calculated for the same MI coupling condi-
tions presented in Figure 3. The histogram further demonstrates the important role of MI coupling processes
in the formation of SE fluxes that precipitate into the upper atmosphere. As mentioned above, for the differ-
ent L shells, we used identical wave amplitudes and plasma sheet parameters as described in the previous
section of this paper. Nevertheless, similar to Figure 3, precipitation is stronger at L= 6.8 due to the greater
efficiency of WPI processes at that L shell. To emphasize the role of MI coupling processes in the formation
of downward energy and/or particle fluxes in the regions of diffuse aurora, one can compare the red and
green lines and bars shown in Figures 3 and 4, respectively. The change in calculated electron energy fluxes
is 300% for L= 4.6 and more than 200% for L=6.8. Therefore, considering as the source of observed precipi-
tation fluxes and energy only electrons that are driven by whistler and/or ECH waves in the Earth’s plasma
sheet is not sufficient to account for all the precipitating fluxes. The MI coupling element in their formation
of the precipitating fluxes must also be taken into account. As shown by Khazanov et al. [2016b], the effect
of MI coupling process in the formation of electron distribution function in the regions of diffuse aurora
becomes even stronger with increasing mean energy leading to higher impact of the MI coupling processes,
and as a result, enhancing the precipitating electron fluxes.

The aurora is one of the most important and fundamental phenomena in space physics, related to the inter-
action of the solar wind with the planetary magnetospheres of Earth, Jupiter, and Saturn. Our results defini-
tively show that the MI coupling element in forming the electron precipitation responsible for the observed
diffuse aurora is very strong and must be taken into account in future auroral studies of planetary systems
with strong magnetic fields. The diffuse aurora is driven from above and below!
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