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An introductory review of theories of plasma instabilities in the magnetosphere 
is presented. Part A is a review of theories of plasma instabilities that are relevant to 
magnetospheric plasmas. Instabilities arising from velocity-distribution anisotropies, 
such as a pitch-angle anisotropy or the presence of beams, as well as instabilities from 
nonuniform distributions of plasmas and magnetic fields, are discussed. Particular 
emphasis is placed on the effect of a mixture of a cold plasma in a high-•s plasma. 
Part B is a summary of works related to actual plasma instabilities in the magneto- 
sphere. In view of the observed plasma parameters, it is shown that the magnetosphere 
is rather stable against most macroscopic instabilities, and its dynamics are pre- 
dominantly governed by microscopic instabilities. 
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1. INTRODUCTION 

The magnetosphere, is filled with almost-ideal plasma composed almost, 
purely of protons and electrons. The Debye length corresponding to. the low-energy 
electrons (~100, meters) is, small compared with the scale size, but there exist 
enough particles per Debye sphere (>•10 '1•') for those particles to behave collec- 
tively a.s a plasma. Collision effects, even for cold electrons inside the plasma- 
pause, are negligible in most cases because the collision frequency there is of the 
order of 10-5'/see-10-4/sec. Recent measurements have revealed that the plasma 
is composed of three distinct energy groups: the medium- to high-energy group 
(> 100 key), the low-energy group (~key), and the cold or thermal group (~ev). 
Most of the collective effects are governed by the low-energy and cold-plasma 
groups. The low-energy group contains the largest energy density. During quie• 
times, its energy density is approximately 10% of the. energy density of the back- 
ground geomagnetic field; during active times the energy density exceeds that 
of the magnetic field. Hence the ratio /? of plasma pressure to magnet. ic-field 
pressure, an important parameter in studying plasma instabilities, must be 
regarded as comparable to unity. 

Papers published on instabilities of the magnetospheric plasma now number 
easily more than a hundred. However, many of these theories need revision 
because of more recent discoveries of plasma characteristics in the magnetosphere. 
For example, the high/• effect, which has been ignored in much previous work, 
needs to be taken into account. 

Direct observations of electric and magnetic fields ranging from a frequency 
of several kilohertz to a period of several minutes are being made simultaneously 
with measurements of the plasma characteristics (such as density, energy, anisot- 
ropy, etc.). These observations indicate that plasma instabilities are responsible 
for many of the interesting dynamic phenomena observed in the magnetosphere. 

Only linear instabilities are treated throughout the paper, except in chapter 5. 
However, the nonlinear effects and instabilities are by no means negligible. The 
elimination of these effects from the present paper is. simply for convenience. 

A. REVIEW OF THEORY OF PLASMA INSTABILITIES 

2. INTRODUCTION TO PLASMA INSTABILITIES 

2.1. Dispersion t•elations 

A general concept of plasma instability is presented here. It covers the 
definition of instability and several 'know-bows' of finding and analyzing the 
instabilities. 
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As in most cases, the general concept is more easily understood by consid- 
ering a typical example. For example, consider a two-stream instability in a sys- 
tem of an electron stream with velocity Vo and a stationary plasma. If we restrict 
ourselves. to a frequency range much higher than the ion plasma frequency, we 
can ignore ion dynamics. (We shall discuss the case where ion dynamics are 
involved in chapter 3). 

The basic equations that describe plasma dynamics are Maxwell's equations, 
which give the electromagnetic field produced by the current and charge distribu- 
tions, and the equations of motion, which describe the motions of charged particles 
in the electromagnetic fields. For the equations of motion, one can use the MHD 
(magneto-hydrodynamic) equations, the Vlasov equation, or a simple single- 
particle equation of motion, depending on the nature of the problem. The MHD 
equations, to be introduced in subsection 3.2d, represent a fluid approximation of 
plasma. dynamics. Although they are often simpler to handle than the Vlasov 
equations, they become invalid when particle dynamics are important. The Vlasov 
equation, to be introduced in subsection 3.1a, is usually more difficult to solve 
but is accurate in describing particle dynamics in the absence of collisions. Col- 
lision effects, if important, have to be considered in a suitable way depending on 
the nature of the problem (see, for example, subsection 3.1e). 

In the example we are considering here, if the electron temperature is high 
so that the thermal velocity v• is comparable with or larger than Vo or the phase 
velocity of the wave vv, we have to use the Vlasov equation. However, if we 
consider a cold electron stream in a cold plasma (v, = 0), a single-particle equa- 
tion of motion is sufficient. Here the electron stream and the cold plasma form the 
two streams. 

We first consider the dynamics of the stream electrons. The equation of 
motion is 

me(dr/dr) - --e(E -• v xB) (2.1) 

where v, me, e, E, and B are velocity, electron mass, electron charge, electric field 
intensity, and magnetic-flux density, respectively. Because we do not know before- 
hand the kind of electromagnetic field produced by the stream electrons, we have to 
include arbitrary fields in the equation of motion. 

Because the electron stream is moving with respect to the stationary frame of 
the plasma, it is convenient to write the total derivative in equation 2.1 in partial 
derivatives in time and space, i.e. 

dv 0v 
- -]- (v. W)v (2.2) dt Ot 

where 

0 0 0 (2.3) 
When one is concerned with the linear instability, the standard procedure at this 
point is the linearization. We write the dependent quantities in terms of dc or 
slowly varying quantities (subscript 0) and rapidly varying quantities (sub- 
script 1). For example, for the velocity of the electron stream v 
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v = Vo + v(x, t) 

We consider the quantity with subscript 1 to be • perturbation to the state rep- 
resented by subscript 0. Hence IVol 

Equation 2.1 for order zero is then 

0Vo e 
Ot nu (Vo' V)Vo -- ---- (Eo -•- Vo x Bo) (2.5a) 

If the stream is stationary in time and spatially uniform, OVo/Ot as well as OVo/OX 
vanish. This means that we are considering an infinitely extended stream of 
electrons. Such a scheme is allowed if ions are also moving with the same velocity 
Vo making the total current vardsh. Then it is immediately obvious that Vo can have 
an arbitrary magnitude parallel to Bo or Eo/Bo, perpendicular to Bo. The per- 
pendicular velocity produced by adc electric field Eo should be the same for both 
the stream and the stationary electrons; hence in the frame of Eo/Bo there will be 
no streaming perpendicular to Bo. (The Eo x Bo drift however does produce two 
streaming between electrons and ions if the collision frequencies for these species 
is different, as will be discussed in subsection 3.1e.) 

Thus in the collisionless case, two streaming is possible only in the direction 
parallel to Bo. We set 

Vo = voea (2.5b) 

where e• is •he uni• vector p•r•llel •o Bo. The zero,h-order solution is c•11ed •h• of 
the equilibrium state. When one considers an instability, it is very important to find 
the equilibrium s•e first. I• is meaningless •o discuss •he instability of • state 
where no equilibrium s•e exists (exceptions •re •11owed for some limited c•ses, 
where •he initial nonequilibrium s•e becomes unstable with • growth r•e much 
f•ster •h•n •he r•e of •ppro•ch •o equilibrium). 

We now employ a rectangular coordinate system and take the z axis in the 
direction of •he dc m•gne•ic field Bo. Then the first-order equation for equation 2.1 
becomes 

Ov, Ov, __e (E• -]- Vo x B• -]- v• X Bo) (2.6) Ot • vø Oz = -- m, 
The next step usually taken after linearization is Fourier-Laplace transforma- 

tion of the dependent variables, for example v•(x, t) 

v•'(•o, k) = dt dx v•(x, t)e 

where v•(x, t) is alternatively given by 

(2.7) 

i f•+i• - d•o dk vx'(•o, k)e •(k"-"•' (2.8) v(x, t) 
For the stability analysis, we usually look for an instability no5 depending on •he 
initial condition of •he perturbations. If we se5 all •he initial values to zero, the 
•ransformed resulSs ha•e identically the same form as •he one obtainable by 
substituting a complex amplitude function defined, for example, by 
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Note that, however, vF in equation 2.7 and vF' in equation 2.9 have different. 
dimensions. I• is also impor•an• •o remember •ha• •he •ransœormafion in •ime in 
equation 2.7 is valid for the. plane Im •o > 0, so that •he integration over •ime 
can converge a6 t -• + •. This ia½• will be used in chapter 3. With •hese two 
points in mind, one. can obtain the transformed result equivalently by substituting 
the amplitude function defined in equation 2.9. The resul• then becomes (for 
simplicity, we delete prime or double prime for •he transœormed quantity) 

i(kzvo -- W)Vl = ___e (El + Vo x B1 + vl x Bo) (2.10a) 
m• 

At this s•age it is usually convenient •o consider the direction of wave propaga- 
tion. This is decided by •he direction of •he wave vector k used in •he transforma- 
tion. Here we take k also in the z direction; •hus Vo, Bo, and k are •aken parallel 
to each other. By doing •his we lose an electrostatic cyclotron wave instability 
[for example, Briggs, 1964] and an electromagnetic instability [Weibel, 1959] but 
gain a considerable simplification, which is important for presenting an example. 
Then, as will be seen, the equation of continuity shows •hat vl is directed also in 
z direction, whereas Poisson's equation gives E1 in •he z direction. This means 
there exists no perturbed magnetic field B• in •his case. v• x Bo also vanishes because 
v• is parallel to Bo. Equation 2.10a then simplifies •o 

--E•e/m• (2 10b) vl = i(kvo -- oO ' 
where Vl, E•, and k are in the z direction. 

Now we have to obtain El. The. sources of •he electromagnetic fields are 
current density and charge density. We have •o derive them from •he velocity in 
equation 2.10b. Equations needed for this are •he relation of the current density J 
to the particle velocity v and number densi6y n, which, in •he linearized form, 
becomes (for an electron stream) 

J1 = --e(novl + nlvo) (2.11) 

and 5he equation of continuity 

O_•tl OJ• = 0 (2 12a) -e + Ox ' 
or 

--ewnl -•- k J1 = 0 (2.12b) 

(Equalion 2.11 is not needed when MItD equations are used.) By elimina[ing vx 
and n,x from equations 2.10b, 2.11, and 2.12b, we can express J1 in [erms of Ex 
and de quartlilies as 

J• =-i•oeo[(co -•ø"'• •E -- k•)o)2J I (2.13) 
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where .•8 is the plasma frequency of the stream electrons given by 

(e•no •/2 (2 14) 
xeom,/ 

and ,co is •he space dielectric constan• (=8.854 x 10 -•a F/m). 
Here we introduce the concep• of equivalent dielectric constant. In t;he second 

curl equation of Maxwell's equations 

V •H = j + •o ot (2.•5a) 
if we know the relation between the current density J and electric field E, such as 
shown in equation 2.13, the right-hand side may be equivalently written as 

V x H = - i•oeo(1 q- t)r (2.15b) 

t expressed as equation 2.16, which is a tensor in general, is called the equivalent 
dielectric constant (tensor). In the case of the electron stream, e becomes scalar 
and is given from equation 2.13 by 

2 

e = --(• • •Vo)a (• e,) (2.16) 
Exactly in •he same way, one can derive •he equivalen• dielectric constant, 

•, for •he s•afionaw plasma electrons 

e• = --(•/•) (2.17) 

where • is •he plasma frequency of •he stationary electrons. Because •here exists 
no perturbed magnetic field, equation 2.15b reduces to 

J• - iweoE• = 0 (2.15c) 

If we use for J• in equation 2.15c •he sum of •he perturbed curren• in •he stream 
and •ha• in 6he plasma, we have 

-iweo(1 + e• + e•)E• = 0 (2.15d) 

The non•rivial solution of equation 2.15d is given by 

D(w, k) • w(1 + e• + e•) = 0 (2.18a) 

Equation 2.18a is called the dispersion relation. 
Let us now briefly review 6he process we •ook to derive the dispersion relation. 

We first assumed an arbitrary electromagnetic field and obtained the response in 
pa•icle motion produced by the Lorentz force. We have linearized •he equation 
by assu•ng the perturbation is infinitely small. We then obtained the electro- 
magnetic field produced by the charge and the current distribution •hat appear in 
consequence of the initially assumed electromagnetic field. The dispersion relation 
represents a relation between • and k that makes the assumed electromagnetic 
field consistent with the induced field for an infinitely small perturbation of a 
form e •(k'•-•'•. Thus if the dispersion relation gives a root for • with positive 
imaginary part, the self-consistent field grows exponentially in time. 
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2.2. Analysis o[ Instability 

A plasma is called linearly unstable when the dispersion relation 

D(•, k) = 0 (2.19) 

has a solution for •0 with a positive imaginary part for any real value of k. What 
we mean by linearly unstable may be illustrated in Figure la and b. Fig. la is a 
commonly used picture of a ball sitting at the top of a hill. This case represents a 
linearly unstable situation because an infinitely small perturbation would kick the 
ball down. 

Case (a) may be called explosively unstable because a finite displacement 
of the ball position does not lead to a stable situation, whereas, in contrast, in 
case (b) t.he ball reaches the next hill and is reflected back, hence it will be 
stabilized with a finite (nonzero) size of perturbation (displacement.). Case (c), 
on the other hand, may look stable, but if a large enough perturbation is applied 
to the ball, it becomes unstable. Such a case is generally called nonlinearly 
unstable. Case (d) represents an absolute stability. 

Throughout the text we will discuss situations represented either by case 
(a) or (b), without trying to distinguish between them. However, as can be 
easily seen from different cases in Figure 1, nonlinear effects are very important 
in studying real dynamics of a plasma. O.ne has to bear in mind that linear 
instability analysis does not give a solution •o all plasma dynamics. 

We will now discuss the nature of the dispersion relation given in equation 
2.19 in the context of stability analysis. The arguments are those developed in a 
recent paper by the author [Hasegawa, 19'68]. In the particular example of a 

O) LINEARLY UNSTABLE 
(EXPLOSIVE) 

b) LINEARLY UNSTABLE 
( NON EX PLOS I VE ) 

C) NONLINEARLY UNSTABLE d) STABLE 

Fig. 1. Models of various stability conditions. 
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stream of electrons and a stationary plasma, the dispersion relation has the fol- 
lowing form (from equations 2.16 and 2.17) 

2 2 

w• w•, (2.18b) • (• _ k•o)• = 0 
Although equation 2:i8b is a four[h-order algebraic equation for •o, i5 can easily 
be seen that two of the roots can become complex by plotting the left-hand side 
versus •o and counting the number of zero crossings. It is also easy to see that if 
Vo - 0, the complex roots disappear; thus the instability arises from a relative 
velocity between two groups of electrons. 

In this section, however, we are not interested only in the fact that a two- 
stream flow of electrons becomes unstable. We are interested in a more general 
theory of the nature of the dispersion relation that leads to an instability. 

The fact that the instability is generated by the .• pa• of the dispersion 
relation implies that • has a pa•icular nature as a dielectric constant. According 
to Landa• and Lifshitz [1960], the electric field energy W of a wave propagating 
in a lossless dielectric medium can in general be expressed as 

w = o 

where (E •) is the time average of the square of the electric-field amplitude. 
If we use this relation, the energy of a wave in a. stream W,, and in a plasma 
W•, can be calculated, respectively, as 

W, • Oo - (o-kVo) • 
and 

W• • 0o• •o 

Thus we can see •ha• W• is always positive, whereas W, can be negative if 
• < kvo. Blow the dispersion relation for stream electrons only can be obtained 
from (g.18b) by setting • - 0 as 

oo- kVo = q-•, (2.21) 

Therefore the mode corresponding to the lower sign of equation 2.21 (called the 
slower wave) does in fact satisfy the relation • < kvo. I-Ience this mode carries 
a negative energy. Such a wave is called the negative-energy wave. The present 
two-stream instability can be interpreted as caused by the coupling between the 
negative-energy wave in the stream and the positive-energy wave in the plasma. 

If the coupling is weak such that the coupling occurs between only two modes 
(the above example is not this case, because four waves whose dispersion relations 
are given by • - kvo -+ •o•, and • - +-,• are coupling simultaneously), four 
different cases can occur as shown in Figure 2 [Sturrock, 1958]. Plotted in this 
figure are portions of the dispersion relation in • - k coordinates that represent 
couplings between two modes of different characteristics. Coupling occurs when 
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i 

'rmk-•' 

T'mc• 

o) UNSTABLE b) UNSTABLE 
( CONVECTIVE ) ( NO N CO N VE CTIVE ) 

Zmk • 

k 

c) STABLE d) STABLE 
(EVANESCENT) 

Fig. 2. Dispersion diagrams of two coupled waves of various natures' (a) opposite energy, 
same group velocity; (b) opposite energy, opposite group velocity; (c) same energy, same 

group velocity; and (d) same energy, opposite group velocity. 

two modes have the same phase velocity at the same frequency •. Thus it can 
be represented by the crossing of two lines that represent dispersion relations o.f 
each mode in the e - k diagram. 

Cases a and b are for two waves with opposite signs of energy, whereas c and 
d are for two waves with the same sign in energy. In case a or b, a complex • 
solution results for real k, hence representing unstable situations; in case c or d, e 
is always real, thus representing stable situations. The difference between a and b 
(as well as c and d) is in the sign of the group velocity (vg = a,,,/ak) of the 
two coupling modes. Specifically, cases a and c are for the same sign in the group 
velocity, but b and d are for opposite signs. 
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In case a, k also can become complex; thus a spatial amplification of a wave 
at fixed real frequency • is possible. Such a ease is called convective instability. 
In case b, the wave number always remains real, hence the instability does not 
conveer away. Such a ease is called nonconvective or absolute instability. 

It can be shown in general [for example, Ha.segawa, 1968] [hat in a lossless 
system the necessary condition for an instability to occur (for the root of the 
dispersion relation to have Im .• > 0) is that par[ of the dielectric constant of a 
plasma (for example, in the previous ease, E8 of equation 2.18a), should satisfy the 
condition of a negative-energy wave, i.e. 

O(•oe)/&o < 0 (2.22) 
for real •. 

We now consider a situation in which losses in the system, either due to col- 
lisions or wave-particle interactions, are not negligible. In such a case the neees- 
saw condition for an instability is that a part of the dielectric constant satisfies 
[Haseqawa, 1968] 

Re • -- Re (-i•oe) = Im (•oe) < 0 (2.23) 

for real •, where ,(= -i,•eoe) represents the equivalent conductivity of a plasma. 
Equation 2.23 represents simply a condition of negative real conductivity, or in 
other words, negative dissipation. O,ne can produce equation 2.22 from equation 
2.23 for a ease with a small loss by expanding, in powers of small Im •o (>0) 
and requiring Re, < 0, hence equation 2.23 represents a more general necessary 
condition for an instability than equation 2.22. 

We will now see how such eases arise by using again the example of two- 
stream electrons in two extreme eases. In the first case, the stream electrons are 
collision-dominated, whereas in the second ease the stationary electrons are colli- 
sion-dominated. Both cases produce instability, but the difference in physical 
mechanism is worth appreciating. 

The collision effect for a cold plasma can be brought in simply by introducing 
a Langevin-type friction term, vv, into the equation of motion, equation 2.1, 
where v is an equivalent momentum-transfer collision frequency between electrons 
and other species. In the first ease, where the stream electrons are collision- 
dominated, •, is modified to 

i(.Ops 
½. = (2.24) •(•o- kvo) 

where the recombina[ion ra•e is assumed to be zero. From equation 2.24, we can 
immediately see thai when .• - kVo < 0, E• satisfies [he condition (2.23), •he condi- 
tion of negative dissipation. According •o •he •heory presented, the system can 
s•ill become uns[able. To see •his we now write down •he en[ire dispersion relation 
(assuming no collisions for plasma electrons), following equation 2.18a 

2 2 

(.0p i•p s 
1 -- -•- q- = 0 (2.25) •o ,, (•o - kv o ) 

If we assume for simplicity %8 << •, the solution of equation 2.25 can be 
wri[ten as 
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2 

•• (2.26) • = • -- i 2•(• -- kvo) 
Hence for k > •op/Vo, the instability results. 

Now we consider the second case where the plasma electrons are collision- 
dominated. In •his case, •he dielectric consSan5 for •he plasma electrons becomes 

• = i•/r• (2.27) 

Naturally Im ,• > 0, and •he dielectric constant represents a dissipative medium. 
The full dispersion relation now reads 

2 ß 2 

1 -- (w •Vo)• + -- 0 (2.28) 
and the approximate solution is obtained for kVo • op >• opo 

( i• (2.29) • = kvo••, I -- 2•/ 
The lower si• •ha5 corresponds •o •he negabive-ener• wave has a solution wi•h 
Im ,o • 0. Equation 2.29 implies •ha5 a negative energy wave can cause insSa- 
bili•y by coupling no• only •o a posifive-ener• wave bu• also •o a dissipa•ive 
medium. This is because the amplitude of •he negative energy wave grows by 
dissipating its energy. 

With these preparations, we can now derive an impo•ant general theory. 
If we define an equivalent longitudinal (electrostatic) plasma conductiviW by 

•(•, k) = i•qnl/k• (2.30) 
where q is the particle charge and • is the perturbed electrostatic potential de- 
fined by 

•1 = Sl/(--ik) (2.31) 

and k is the wave number, the dispersion relation of an electrostatic mode can in 
general be written as [Hasegawa, 1968] 

--i•,o + •(•, •) = 0 (2.32) 

where k = [k]. 
We consider a situation such that the system has only a small loss. Mathe- 

matically this means that for a real frequency w and wave number k, IRe a] (( 
[•(O Im a/O•)], and equation 2.3 is satisfied by the real frequency •(=•) at 
real wave number k(= k•) such that 

+ i = 0 (2.33) 

The imaginary pa• of •(=.•) can be obtained in the following way. We expand 
the dispersion relation equation 2.33 around • - • in powers of • 

-ieo(• + iw•) + i Im a(•, k•) + Re •(• k,) + iw• iO Im [a(w•, k•)] = 0 (2.3• • • O•r 

Using equation 2.33, we have from equation 2.34 
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Re [•(co•, k•)] (2.35a) col ---- Im co -- {0 Im [a(co,, k,)]}/0co• -- eo 
Equation 2.35a is quite a useful relation •hough it applies only in limited situa- 
tions wi[h small loss. We have used • and • in a mixed way because, is more 
na[ural when we [alk abou[ loss, whereas e is more natural when we •alk abou[ 
energy. The relation be[ween, and • is 

-i• •o = • (2.36a) 

hence 

Re • = Im (w•) (2.36b) 
Im• = -Re½•) 

If we include [he vacuum dielee[tie cons[ant; in e, equation 2.36a can alterna- 
tively be writ•[en as 

Re • 

co• = --[0(co Re e)]/0co (2.35b) 
From equation 2.36b, one can conclude immediately [ha[ instabili[y results either 
when a negative dissipation (Re • < 0) couples to a positive-energy wave 
(0(.o•e)f0• > 0), such as the example in case 1, or when a negative energy wave 
(0(•oe)f0• < 0) couples •o a positive dissipation (Re • > 0), as in ease 2. 

One can generalize the argumen[ to a general dispersion relation (wi[hou• 
res[fiction •o an eleetros[atie mode) given by 

D(co, k) = 0 (2.37) 

if •he following condition is satisfied by D: •here exists real •o(=•o•) for a real k 

1. Re [D(co,, k)l = 0 (2.38) 

[ 0 Re [D(o•, k)]! (2.39) 2. lira [D½•, k)]! << •o• &o• 
Using •he same •eehnique as before, by expanding D around • = •, we have 

Im k) 
co' = 0 Re [D(co,, k)]/0co (2.40) 

In the magne[osphere, because there are different groups of plasmas (in 
[erms of average energy) a situation often occurs when a wave propagated by 
one group (typically the cold- or low-energy group) resonates with particles in 
other groups (low-energy or medium- to high-energy group) and exchanges 
energy between groups. Under •hese circumstances, the condition of wave propaga- 
tion (equation 2.33 or 2.38) is satisfied by the former group, whereas Re • in 
equation 2.35a or Im D in equation 2.40 is decided by •he lat•er group. Such an 
approach simplifies •he analysis significantly. Therefore expressions (2.35a) or 
(2.40) are qui[e useful in magnetospheric plasmas. 

that satisfies 
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Given the dispersion relation in the form of equation 2.37, finding a linear 
plasma instability requires only the algebra of finding a root for • with a positive 
imaginary part; for a given value of real wave number k. The above argument; 
applies only for a case of a small growth rate. For a case with larger growth rate, 
a classic technique called Nyquis•'s theorem is useful. Consider the following 
Cauchy integral, • 

I = f,• D(•d•k) X dD (•, k) (2.41) dw 

where the integration contour is along the border of the upper half-plane in the 
complex (o plane, namely, from -• to +• on real • axis and infinite semicircle 
on the upper half-plane (Figure 3). If D = 0 occurs for • with a positive imagi- 
nary part, I has a finite value according to the Cauchy residue theorem. (D is 
assumed to have no pole. The assumption is shown to be. valid for a physical 
system using causality arguments). Now, the integral I can be transformed into 
a D plane integral such as 

I= f•, dD/dw f• dD (2.42) D dw= D 
where the integration contour has •o be mapped in•o the D plane. In •he D plane, 
the pole occurs a.t D = 0, hence I has a value when the mapped contour in D 
plane encircles the origin in D plane. In other words, an instability results when 
the mapping on the D plane of the contour that encircles the upper half • plane 
encircles the origin in the D plane. This is the 1Nyquist theorem (cf. Figure 3). 

Imw 

O[ ' Re• 

ImD ImD 

ReD ReD 

a) STABLE 'MAPPING b) UNSTABLE MAPPING 

Fig. 3. Nyquist diagram for (a) stable and (b) unstable cases. 
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3. PLASMA INSTABILITIES I•ELEVANT IN TI-IE MAGNETOSPHERE 

In this chapter we summarize plasma instabilities that are possibly applicable 
to magnetospheric plasmas. A plasma instability occurs by conversion of steady 
free energy in the plasma into fluctuating field energy. Free energy is present 
when the plasma is not in thermodynamical equilibrium, that is, when the plasma 
is not either uniformly spread in space or does not have a Boltzmann distribution 
in velocity space. (Note, however, that a dynamical equilibrium state can be 
achieved if the forces acting on a plasma are balanced, even though the plasma 
is not in thermodynamical equilibrium.) Because the plasma in the magnetosphere 
fulfills neither criterion, it is subject to some instabilities. 

3.1. Velocity-Space Instabilities 

Plasma instabilities that originate from the velocity-space nonequilibrium are 
primarily due either to a two-humped velocity distribution or to an anisotropic 
distribution with respect to the ambient magnetic field or the direction of the wave 
propagation. Both electrostatic (• x E = 0) and electromagnetic (•.E = 0) 
modes become unstable in the presence of such distributions. For introductory 
purposes, we will start with one of the simplest examples of such an instability, 
an electrostatic instability caused by a two-humped distribution, and will gradually 
generalize the idea into more complicated systems. 

3.1a. Electrostatic instabilities due to two-humped velocity distributions. If the 
velocity distribution function has two or more peaks, it is known that an instability 
can occur. The two-stream instability shown in chapter 2 is an example of this 
case. Whereas the two-stream instability discussed in chapter 2 is excited by the 
negative energy wave carried by the stream, in this subsection we discuss a two- 
stream instability that is excited by negative dissipation produced by wave-particle 
interactions. 

Let us consider first an electrostatic perturbation in a high-frequency regime 
where the ion dynamics are negligible. When the velocity spread is significantly 
large, individual particles will have different trajectories, and some will interact 
with the wave strongly. On the other hand, the wave is produced by the macro- 
scopic behavior of those particles, such as the number density or the current. 
Description of such a system is more effectively made by considering particle 
dynamics in phase space (x, v, t). When the collision effect is negligible, the phase- 
space density function •(x, v, t), which represents the probability density in velocity 
space, of an individual particle can be regarded as the same on average as that of 
all the other particles, and its value is conserved. 

The Vlasov equation, which represents the conservation of the density function 
•(x, v, t) in a force field F(x, t), can be written as (taking the nonrelativistic case 
for simplicity) 

O• O• 1 O• 
=o m 

The current density J and the charge density p are obtained by taking the first 
and zeroth moments of [ as 
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J(x, t)= qno f• V/(X, V, t)dv .2) 

p(x, t)= qno f_• [(x, v, t)dv (3.3) 
where q is the charge of the particle represented by [, no is the mean density, and 
dv represents the volume integral in the velocity space. 

We first consider a case in which the direction of propagation is parallel to the 
magnetic field. Because we assume an electrostatic perturbation (V x E = 0), 
we use the electrostatic potential • to represent the field. The linearized Vlasov 
equation for the electron distribution function then becomes 

Of 1 all e O• Ofo 
O--[ + V -•zz + m, O z Ov- 0 (3.4) 

and 

F• = e(O•,/Oz) (3.5) 
where )q [- )q (z, v, t)] is •he perturbed velocity distribution function of an dec- 
•ron, and fo [- f.o(V)] is •he unperturbed veloci•y distribution function •ha• 
depends only on velocity v. Substituting equation 3.5 in•o 3.4 and taking •he 
Fourier-Laplace •ransformation as defined in equation 2.7, we have 

fl = v -- w/k • (3.6) 
The perturbed number density n• can be obtained [hen from equation 3.3 as 

m, v - w/k dv (3.7) 
As was discussed in chapter 2, the Fourier-Laplace bransformation is valid for 
the plane Im • > 0, hence, the integral over velocity space in equation 3.7 has 
•o go below the pole at .•/k (see Figure 4). The conductivity associated with such 
an electron per[urbafion can then be obbained by using equation 2.30 as 

• • •2 v (a.s) 
The dispersion relation is obtained by substituting the above expression into 
equation 2.32 as 

w•, 2f_• Ofo/Ov i k" dv = 0 (3.9) v- 

According [o •he criterion present•ed in equation 2.23, the necessary condition of 
instabilit•y is obtained from •he condition Re rr < 0. If •he growth ra[e is very 
small, i.e., if Im .• is small, rr in equation 3.8 can be expressed in terms of •he 
principal integral and •he contribution from •he pole a• v - o¾/c as (ef. Figure 4) 

o- = k" P dv q- i•r (3.10) 
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v= c•/k 

Rev 

fo(v) 

I 
I v 

wlk 

fo(v) 

I 

O) STABLE DISTRIBUTION b) UNSTABLE DISTRIBUTION 

Fig. 4. Path of integration of equation 3.9 over velocity v, and 
the corresponding (a) stable and (b) unstable velocity distri- 

butions. 

where P represents the principal integral. The necessary condition for instability 
with a small growth rate is then expressed immediately by 

0)•ø1 > 0 (3.11) co Ov I,=•/•, 
Physically, equation 3.11 means that at v = co/k(=v,,), the unperturbed velocity 
distribution function has a positive gradient. Since the Maxwell distribution of 
the form e-" always has a negative gradient, it is always stable (Im co • 0, Landau 
damping); if the distribution has an additional peak at v • co/k, the necessary 
condition of the instability is satisfied. Given a two-humped distribution, the 
existence of a phase velocity in the range of positive gradient can be found only 
by solving for real co and k the dispersion relation given by 

o•, •' f ;• O•o/OV - - o 
For further details see Landau [1946] and Jackson [1960]. If it happens that 
equation 3.12 gives a complex • solution, the above argument breaks down. For 
example, if •o represents two streams with no velocity spread, i.e., fo - •(v) + 
•(v - V.o), equation 3.12 gives the same dispersion relation shown in the example 
in chapter 2, and has a complex • solution. The instability occurs by interactions 
between negative and positive energy waves, and not by wave-particle inter- 
actions, as shown in equation 3.11. 

We now consider a low frequency regime where ion dynamics become impor- 
tant. The dispersion relation including ion dynamics can be obtained in exactly 
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the same manner by adding the ion charge density perturbation to. the conduc- 
tivity as 

• Ofø'/OV dr-- ' (3.13) 1-- k s v- (w/k) • v-- (w/k) dv = 0 
where the ion and electron contributions are designated by the subscripts i and e. 
The dispersion relation given above is not analytically soluble for a general case. 
Hence we consider a particular case where the ions are cold and stationary, 
whereas the electrons are hot with their thermal velocity much larger than the 
phase velocity and drift with a drift velocity Vo with respect to the ions. Then the 
integral for the ion contribution in equation 3.13 becomes, after integration by 
parts 

ii__ f;,• O•o•/Ov f:• •o• dv v- (•/•) •v - Iv- (•/•)]• 
The 'cold' distribution can be represented by the delta function as 

Io, = o(v) 

hence 

-•i •-- k2/w2 (3.14) 

For electrons 

f:• Oio•/Ov dv Io - 
v - (•1•) 

p f;•, Oio,/Ov Ov I 

because the thermal velocity for electrons is assumed much larger than the phase 
velocity, if we assume a Maxwellian distribution for fo• such •hat 

I (,-,o) v2. 
Io, = (2,a..)•./•v•,, e- 

• ..... e ' dv+i• Ovl I,_ (2•),/¾½, v re, ' "•/• (•.15a) 
1 = --•+i• 

where we assume •he electron drif• velocity V.o •o be much smaller •han 5he •her- 
mal velocity v•e. Then the dispersion relation equation 3.13 becomes 

I -- co._•_ + k2v•', • _ i•' k 2 Ov -- 0 (3.15b) 

For a low frequency limit, • << •, the real part of the dispersion relation is 
readily soluble and gives 

• -- kc, (3.16) 
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where c8 is the ion sound speed given by 

c. -- v•6(m6/m•) •/" • (3.17) 

The wave represented by the dispersion rela.tion (3.16) is called the ion acoustic 
wave. The growth ra•e 7 of the instability is obtained using equation 2.34a as 

As expected, the instability (• > 0) occurs when O[oe/,Ov is positive at v = c8. 
This means •he drif• velocity V.o of the electrons has to be grea•er •han c8 because 
•oe has its only peak at v = Vo. 

We have shown •ha5 when •he ions are cold and •he electrons are ho• the 

ion sound wave becomes unstable when the electron drift velocity exceeds •he 
ion sound speed. However, if the ion •empera•ure is comparable with •he elec- 
tron •emperature, •he instability becomes possible only when •he electron drif• 
speed exceeds the electron •hermal speed, v•, which is 43 [=(m4/m.•) •/•] •imes 
larger than c• [Fried and Gould, 1961]. 

3.1b. Electrostatic instabilities due to anisotropic velocity distributions in 
the presence of a uniform magnetic field. In •his subsection, we consider •he 
effect of an ambien• uniform magnetic field on electrostatic waves. The Vlasov 
equation for the unperturbed velocity distribution function fo becomes 

Ofo 
' (v xBo).• -- 0 (3.19) 

Equation 3.19 can be satisfied for any function of vñ and vii as 

•o(v) = •o(V., v,,) (3.20a) 
where 

and (3.20b) 

+ 

are the velocities parallel and perpendicular to the magnetic field, and z is taken 
to be parallel to Bo. As was pointed ou• before, the thermodynamic equilibrium 
situation is achieved when io is the isotropic Boltzmann distribution; hence, any 
anisotropic distribution or two-humped distribution either in v. or v• produces 
free energy in the plasma and may cause instabilities. 

If we limit our interest still to electrostatic perturbations, the linearized 
Vlasov equation for a species with charge q and mass m becomes 

oW+ + (v xBø)'•vv: m Ox'Ov (3.21) 

In equation 3.21 f• can be obtained either by integrating along the unperturbed 
orbi5 [for example, see Krall, 1968] or by solving the differential equation by a 
suitable change of variables [for example, see Bern. stein, 1958]. We •ake the 
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former method because it has more general application, as will be seen later. 
fl •hen can be written formally 

]•(X, V, t) -- dt t --q 0_•l(t') 0•o (3.22) • m Ox • ' Ov • 

where the unperturbed orbit of the particle can be obtained from the equation 
o[ motion in the unperturbed field 

which gives 
dv'/dt' = (q/m)(v' x Bo) 

X • = Xo -•- [cos (0 - •o•t') - cos 0] 

y' = yo q- v_•' [sin (0 - •o•t') - sin 0] (3 24) •0½ ' 

z • = Zo -]-Vii•t • 

where 0 is the polar angle in velocity space and wc(=qBo/m) is •he cyclotron 
frequency. 

If we consider a perturbation of the form exp i(k. x -- wt) and take the direc- 
tion of wave propagation in the x, z plane (without loss of generality) such that 

k. x = k•x • k•z (3.25) 
Equation 3.22 gives 

[•(x, v, t) = i dr' k•.--• + k exp i[k•.x'(t') -]- k,,z'(t') wt'] (3.26) 

After performing •he integral over g and substituting the resul• into equation 
3.4 to obtain •he number-density perturbation nl, one can obtain the longitudinal 
conductivity of the plasma in a magnetic field from equation 2.30 as 

a(w, k) - k • • dv J• k•v• (w 
where dv = 2•v• dv• dv,• and J. is the nth order Bessel function of the firs• kind. 
In deri•ng equation 3.27 use is made of the identity 

e• (iz sin 0) = • J.(z) exp (inO). 

Because we already know that a •wo-humped distribution in v•l produces • con- 
duc•ivi•y wi•h a negative dissipation, we assume a stable (single-humped) dis- 
•ribution in the parallel direction. We take a Maxwellfan distribution for v•; •hen 

1 • exp v• lo(V, = io(V) 
where v• is •he thermal velocity in •he para!lel direction and fo• is the distribu- 
tion function depending only on the perpendicular velocity v•. I• is also con- 
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venient to introduce here the plasma dispersion function defined and tabulated 
by Fried and Conte[ 1961] 

dx for Im• > 0 
(3.29) 

analytic continuation of the 
above integral for Im •' < 0 

The power-series expansion for a small argument and the asymptotic expansion 
•or a large argument of the Z œunction are given by 

where 

Z(•) "'0 i(,r)•/2e-r' - 2•(1- •) 
for << 

i(r)1/2o'e -r' -- • 1 q- 
for Irl >> 1 

0 Imp' > 0 

.= 12 Imr=O Imp' < 0 

Then equation 3.24 may be expressed as 

: 

where 

oo--ntoc(1--R.vT,"/VTx') ..[ oo -- n•c )] 

(3.30) 

(3.31) 

(3.32) 

t. , o•'--•-, Io•.(v•.)2,,'t,•. dv• > 0 (3.33) 
and 

where 
... 

v•,, = (v,, •') and V•x = (vl•)/2 

The necessary condition of the instability is again obtained by finding the 
condition Re • < 0. Because the imaginary par[ of the plasma dispersion function 
is always positive, such a condition can be written as 

0 < • < na•,(1 --vr•aR,,/vrx •) (3.35a) 

1 -- v•,"Rn/vTx" > 0 :•(3.35b) 
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Now R• is shown to be unity if foñ is also Maxwelltan (but with perpendicular 
thermal velocity vrñ different from the parallel thermal velocity vr,). Then by 
writing v•,,•'/v•,_L 2 -- T,/T_L, where T, and Tñ are parallel and perpendicular 
temperatures, respectively, (3.35b) reduces to 

Ti/T• • I (3.35c) 
Equation 3.35c shows that a plasma with a larger temperature in the direction 
perpendicular to the magnetic field than that in the parallel direction can become 
unstable for an electrostatic perturbation. 

If fo• is not Maxwelltan, R,can deviate from uni6y. In fact if fo• has a peak 
at v• • 0, R,can become negative, in which case 6he necessary condition of 
instability (3.35b) is satisfied independent of the ratio vr,/vr•. Hence another 
necessaw condition, which is independent of equation 3.35c, is 

•• VJ.(k•v•••• 10fø•2.•dv• • O (3.35• 
Equations 3.35a, b, c, and d are necessary conditions for an instability of electro- 
static perturbations in a magnetic field. The necessa• and su•cient condition 
must be worked out by finding a suitable wave mode with which the negative dis- 
sipation found here can couple. These instabilities, which are associated with 
anisotropies in the velocity distribution, were found by Harris [1961]. 

In addition to the distribution anisotropy, low-ener• particles in the mag- 
netospheric plasma tend to have a distribution in which particles falling into the 
loss cone are absent. Such a distribution, called a loss-cone distribution, is known 
also to be subject to an electrostatic instability [Post and Rosenblurb, 1966]. 

3.1c. Electromagnetic instabilities due to anisotropic velocity distributions in the 
presence o• a uniform magnetic field. In this subsection we consider plasma insta- 
bilities that have a predo•nantly electromagnetic nature. This means the case 
where V. E • 0 in contrast to the electrostatic cases where V • E • 0. In reality, 
however, waves in a hot plasma propagating oblique to the ambient magnetic 
field satisfy neither V • E = 0 nor V.E = 0. OMy when the k vector is exactly 
parallel or perpendicular to the magnetic field do the electrostatic waves and 
electromagnetic waves separate. 

In the case of oblique propagation (k •Bo • 0), however, one can generally 
say that the wave approaches electrostatic near the resonant points given by 
•k• • •. Hence the results presented in subsection 3.1b are valid for short wave- 
length. In the general case of oblique propagation, however, one has to derive the 
dispersion relation from the full Maxwelltan equations 

k(k.E,) -- k•E, + • (I + ,).E, = 0 (3.36) 
where l is a unit tensor given by 

i o o 

l= 00 1 • (3.37) 0 

and z is the equivalent dielectric tensor that is related to the conductivity tensor by 
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and 

• = -io•--• (3.38) 

-- f dv 
(3.39) 

------ •.E• 

The perturbed distribution function f• can be obtained as a function of E• by 
solving the Vlasov equation including the full electromagnetic field 

0•tl 0,• •(vxBo) 0,• _•[E•+Vx(kxE•)] 0,o (3.40) +v.•+m '•= m • '0v 
The equivalent dielectric tensor obtained this way has the following expression 

t =- • • I+ • dv k,v,,- (•--•)• x S (3.41) 
where the matrix l is given by equation 3.37 and the matrix S is given by 

S = -i • vxJ.J.' (vxJ.')" -ivxv•tJ.J.' Yz (3.42) • v, . ivxv•J.J.' (v•J.) • 
and the arguments of the Bessel functions J. are kxvx/w• and w• is the cyclotron 
frequency qBo/m with sign included. In equation 3.42, Bo is taken in the direction 
of positive z axis. Expressions 3.41 and 3.42 are those derived by Guest [1971]. 
The dispersion relation obtainable from equations 3.36 and 3.41 above represents 
the most general case for a uniform plasma in a uniform magnetic field. For exam- 
ple, instabilities presented in subsection 3.1b can be derived in a more exact form 
using the above expression. We do not, however, go into the detail of electromagnetic 
modification of the instabilities derived in subsection 3.1b, but focus our attention 
only on instabilities that are predominantly electromagnetic. For this purpose we 
look at the case where the wave propagates parallel to the magnetic field. In this 
case, instability arises owing to either two-streaming or pitch-angle anisotropy 
(Tx/T• > 1). Waves associated with these instabilities are the electron- and 
proton-cyclotron waves. 

In Maxwell's equation 3.36 we put k.Ex = 0. If we also put kx = 0 in the 
dielectric tensor in equation 3.41, e• becomes equal to e•, and %, as well as 
vanishes. We then have for a transverse wave propagating parallel to the magnetic 
field 

2 

-•"• + • [(• + •)(• + •)1 = 0 
c (3.43) 

2 

-•E• + • [(1 + •)(E, - •E•)] = 0 
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If we define a new electric-field vector 

725 

E•=E•-iE, 

for the right-hand circularly polarized wave and 
(3.44) 

EL = E•:+iE, 

for the leœt-hand circularly polarized wave, ER and EL satisfy 

-• + •(1 + •) + •• • = o 
and 

(3.45) 

(3.46) 

I 0)2 0)2 -k 2 + • (1 + •) - i• • EL = 0 (3.47) 
From equations 3.46 and 3.47, together with the dielectric tensor in equation 

3.41, we have the dispersion relation for the right-hand polarized wave 

and for •he left-hand polarized wave 

+ •,•f (• - •,,)•o,,'(v,,) - •[(k•,•)/2)(O•o,,'/ov,,)]_ o (3.40) • -- kvl• -- •ci -- 

In •he above expressions, fo, • and fo, © are •he elecCron and ion dis•ribu½ion func- 
½ions in ½he parallel direction, and (v•2)/2 and (v •?)/2 are •he elecCron and ion 
thermal velocities in ½he perpendicular direction. In equations 3.48 and 3.49, if 
we •ake a limi5 of zero ½emperature by puCting (v_L e) - 0 and fo, - •(v,), we 
can recover ½he familiar dispersion relation for elecCron-cyclotron and ion cyclo- 
tron waves, respectively. 

Let us firs• discuss •he •wo-streaming4ype instabiliCy. For •his we choose 
a coordinaCe system fixed ½o ½he ions such •ha• ½he distribution func½ions are 
given by 

fo,, • = •(v, - •o) (3.•0) 
•o,'= 

Subs•iCu½ing equa½ion 3.• in½o 3.49 we obtain ½he dispersion relaSion of ion- 
cycloCron waves wiCh drifting cold elecCrons 

2 • -- kuo 2 k•c: -- •: + •. + •i = 0 (3.51) 

The ins•abiliSy arising from equation 3.51 was first discussed by Be•stein and 
Dawson [1958]. However, B•ggs [1964] as well as Hasegawa and Birdsall 
[19•] later poinCed out ½ha5 ½here are 5wo ranges in •(• • 0 and • • •½) and 



726 AKIRA ItASEGAWA 

k (k • 0 and k • •dVo) in which such an instability arises, as can be seen from 
the plot of equation 3.51 in (•, k) space in Figure 5. More precisely, the distribu- 
tion function given by equation 3.50 produces current in the z direction; hence, 
the assumption of the uniform z-directed magnetic field is violated. One must 
therefore assume an ion current to compensate this electron current. 

It is important to point out that, although for the example shown here the 
two-stream-type of cyclotron-wave instability occurs only for streams of opposite 
charge sign, a two-stream instability between the same species (electron-electron 
or ion-ion) can occur for cyclotron waves if one considers either the effect of 
finite cross section of the stream [Hasegawa, 1966] or the effect of anisotropic 
kinetic energy [Bell and Buneman, 19.64]. 

We will now discuss cyclotron-wave instabilities associated with anisotropic 
temperature (Tñ > Tii). Such instabilities were first pointed out by Rosenbluth 
[1959] and Weibel [1959]. As in the case of the electrostatic two-stream instabil- 
ity, the instability arises because of either the negative-energy wave or of negative 
dissipation. The instability due to the negative-energy wave can be found easily 
by considering the limit of T,-• 0 with finite Tñ. For example, the dispersion 
relation of the left-hand polarized wave then becomes 

From equation 3.52, • is found to become complex for wave number 
where 

km 2 • 
and the growth rate for k >> km becomes 

Im• • ((vi••}) 
while the real pa• of •he frequency is given by 

The dispersion relaSion equation 3.52 is plotted in Fig•e 6. 

(a.53) 

(3.54) 

½2'- 

Fig. 5. Dispersion diagram of coupling be- 
tween the ion-cyclotron wave and the slow 
electron-cyclotron wave in a two-stream elec- 

tron-ion system. 
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Fig. 6. Dispersion diagram of the ion-cyclo- 
tron wave in a plasma with anistropic tempera- 

ture (T• >> T,). 

When there exists a significant spread in v, and a large number of particles 
resonate with the wave at • - •o ñ kv,, Im .e becomes sizably large, and the 
instability becomes the negative-dissipative type. We take the electron cyclotron 
wave as an example. If the growth rate Im •o is small, we have from equation 3.48 

For most distributions Ofo,•/Ov, may be written as -v,,/(v,• •) fo, •. Thus if we 
write 

equation 3.56 becomes 
2(v,,. •') -- (a.57) 

w -- kvll -- wee 

which can be further reduced for small Im • using Dirac's expression as in equa- 
tion 3.10 

Im•,•--• •c. + (•--•.) T l /oil k 
The condition of the instability is obtained simply by imposing Im •o > 0 and 

T.L e_ OJ c e 
T,. > (3.59a) 

Equation 3.59a shows that even for a small anisotropy in temperature, Im • 
becomes positive for •o --) •ooe. When Im •o is large, the necessary and sufficient con- 
difion of the instability can be obtained by finding the positive-energy range for 
the frequency range satisfying equation 3.59a (cf. equation 2.35b). Because we 
know from equation 3.54 that a cyclotron wave with anisotropic temperature 
carries a negative-energy wave for a frequency range similar to that for which 
Im •o > 0, equation 3.59a does not give the necessary and sufficient condition of 
the instability in general. 

However, as in the magnetosphere, if a significant amount of cold electrons 
are present, the cyclotron wave carried by the cold electrons is definitely a posi- 
tive energy wave; hence, equation 3.59a will give the necessary and sufficient con- 
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dition for the instabiliW. This reasoning is applied by Kennel and Petschek 
[1966] in their calculation of pitch-angle scattering of electrons by the waves 
excited by this instability. Isotropization of the distribution as a consequence of 
the instability has been demonstrated by Hasegawa and Birdsall [1964] using a 
computer experiment. 

This electromagnetic-wave instability excited by a temperature anisotropy 
exists even without a magnetic field as shown by Weibel [1959] when the tem- 
perature perpendicular to the direction of propagation is larger than the parallel 
temperature. As can be seen from expressions 3.48 and 3.49, a large <vña> is 
needed for the instability to occur; hence, it is not necessarily a large 'tempera- 
ture,' but can be a kinetic energy in the perpendicular direction. In the absence 
of the ambient magnetic field, a two stream in one species produces <vñ2> and 
hence is subject to an instability. Such a,n instability, the electromagnetic-wave 
instability propagating in the direction perpendicular to the. stream, has been 
discussed by Momo ta [ 1966 ]. 

3.1d. Hydromagnetic instabilities due to anisotropic pressure. In this sub- 
section we discuss the effects of pressure anisotropy on hydromagnetic waves (low- 
frequency electromagnetic waves in a magnetoplasma). Hydromagnetic insta- 
bilities arising from anisotropic pressure can be derived from the combination of 
Maxwell's equation 3.36 and the equivalent dielectric tensor given in equa- 
tions 3.41 and 3.42, by taking the limit as ,•'/• << 1 and kv•/o• << 1. As was 
shown by Kutsenko and Stepanov [1960], at such low frequency and long wave- 
length limits the dispersion relation separates into two expressions: 

(3.60a) 

representing the shear mode (the mode having no variation in the parallel com- 
ponent of the magnetic field) and 

c2k2 / 2 e• -{- e•z = 0 (3.61a) 

which represents the coupled compressional wave and the ion acoustic wave (the 
mode having variation in the parallel component of the magnetic field). In the 
above expressions, •'s are the components of the dielectric tensor at the hydro- 
magnetic limit, which can be expressed in general as [Hasegawa, 1970a] 

• •- 1-k , _k"•(v speci es (3•c 2 2(0 

•xy 
speci es (MfMc (M 

•yy 

•zz 

(3.62) 

where 
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fo - I = dye, 2rvx dvx (vii - oo/k,,) •' 
As was poin[ed ou[ by •he au[hor [Hasegawa, 1969], in •he magnetosphere 

where a• leas[ 10% of cold electron mixlure is expected .e•, becomes very large, 
and Ez is effectively shor[-eireui•ed by •he ligh[ cold electrons in most eases. In 
[his ease •he ion acoustic mode deeouples from •he compressional Alfv•n wave, 
and equation 3.61a further reduces •o 

c2k 2 
• - • = o (3.61b) 

Let us consider an ins[ability assoeia[ed wi•h the shear Alfv•n mode rep- 
resented by equation 3.60a. For simplicity, if we consider a nondrifting plasma, 
<v•> = 0, •he dispersion relation becomes, with equation 3.62 

• ,• . , •,2 • -- -• = 0 (3.60b) 
If we note tha• 

2 2 

w,• w,, 1 (3 63) 
where vx is the Alfv6n speed and 

•c • (3.64) w. - 2 Bo2/2•o - 2 
for each species, where fi is •he pressure ra•io of a plasma species •o the magnetic 
field, •hen equation 3.60b reduces to 

•,,• - i - • •(•,- •) (a.6Oc) species 

Equation 3.60c, which gives the standard dispersion relation for the shear Alfv•n 
wave if fi• = •, can be seen to produce imaginary • if 

i -- • •(•,- •) < 0 (a.65) 
8DeC i e8 

Equation 3.05 gives the necessary and su•cien• condition of the ins•abili[y of 
shear Alfv.6n waves. Ins•abili[y occurs for •, > • • 1, namely for a high • 
plasma wi•h a parallel plasma pressure larger •han •he perpendicular pressure. 
This instability is called the hose instability because of its similari[y •o the 
instability of a garden hose caused by a large parallel flow of wa[er. 

Le• us now look a• •he ins[ability associated wi•h the compressional mode 
given by equation 3.0lb. If we consider again a nondrifting plasma, wi•h a 
MaxwellJan velocity dis[ribufion, ½• becomes, from equation 3.02 

- c• • •"+ •,• • +•2' (3.•) •'= r [/•; • •" 2 '(2) •7•kiiv• sDeoies 

where 2' is •he deriw•ive of •he plasma dispersion function defined in equation 
3.29 and given by 
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Z'(f) = - 211 + fZ(•')] (3.67) 

The unstable roo•; is found by •aking a low phase velocity limit; such 

a•/kl•va, << 1 (3.68) 
and 

a?/k"va" << 1 (3.69) 

in which case •he dispersion relation of •he compressional mode (3.61b) reduces 

speci 2 es speci es 

fl,• k,,(v,,,} k•/ • = 0 (3.61c) 
Solving for •, we have 

species 

+1+ •]] ill(1--fl•)] (3.70) species 

One can immediately see from this expression that the instability (Im ,• > O) 
occurs either when 

1 q- • fl' -- fl•' < 0 (3.71) 
sDeci es 2 

for large kll/kñ (almost parallel propagation), or when 

1+ • fl.(1--/?•)<0 (3.72) species 

for small k,/k_k (almost; perpendicular propagation). Equation 3.71 is simply 
5he condition of •he hose instability indicating bha5 •he hose ins•abiliby occurs 
also for the compressional mode. Equation 3.72, which is satisfied for/•_k >/•11 "• 
1, is a complementary situation to the hose instability. The instability represented 
by equation 3.72 is called the mirror instability. 

Le• us briefly discuss the physical implication of the latter instability. As 
can be seen from the condition, equation 8.69, which was necessary to derive the 
unstable solution, the mirror instability is not the instability of the compressional 
Alfv.•n wave whose dispersion relation is given by o?k'ava • • 1. In fac•, as can 
be seen from equation 3.70, • is purely imaginary, either growing or decaying. 
Such a mode is called the entropy mode. The mirror instability is hence the insta- 
bility of a compressional entropy mode. This mode appears also as a drift wave 
when diamagnetic drif• motion is considered (see the next section). The Im • < 0 
solution of equation 3.70 for a plasma with an isotropic pressure,/•. - •,, rep- 
resents transit-time damping [Stix, 1962] of the entropy mode. Transit-time 
damping is •he magnetic analog of Landau damping where •2• acts like an 
electrostatic potential •, where • is the magnetic moment. When a compressional 
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wave is set up, it is ordinarily damped out by the transit-time damping. I-Iow- 
ever, when fiñ > /911 -• 1, the diamagnetic repulsion of the plasma, which is 
trapped in the local mirror field created by the wave, excludes the magnetic 
field and further decreases the parallel component of the local magnetic field. 
This accelerates the flow of plasma into the thus deepened well of the local mir- 
ror, and therefore the perturbation grows. 

In the magnetosphere, except possibly in the tail, •ñ in general is larger 
than •,; hence the mirror instability is more likely to occur. 

3.1e. Instabilities in partially ionized plasmas. When the plasma is only 
partially ionized, such as in •he ionosphere, •he difference in •/.• (• is •he collision 
frequency beSween particular species and neutrals) for electrons and ions can 
produce a difference in drif• velocities among •hose species when an external 
electric field in applied. ,Such a situation brings abou• some unique instabilities in 
•he partially ionized plasma. In •his subsection we •rea• such instabilities. 
Although velocity-space instabilities are •rea•ed exclusively in •his subsection, 
we introduce for the firs• time •he effect of coordinate-space nonuniformity. 
This is because •he existence of an electric field in a partially ionized plasma, 
which is necessary •o drive a driœ•, is often rela•ed •o nonuniformity in •he plasma. 

We consider • model plasma, which is imbedded in uniform m•gnefic •nd 
electric fields Bo and Eo. The plasm• h•s i•s density gradient in •he direction 
transverse •o •he •mbient m•gne•ic field. The coordinate system we •ke here is 
shown in Figure 7. The transverse electric field Eo•, in •he direction of •he density 
gradient, is either •n arebipolar field or th• plus • field •pplied from •n external 
source. We consider • longitudinal electrostatic w•ve propagating in •n •rbitmry 
direction in such • plasma. 

First, let us s•udy •he behavior of electrons. The density gradient •nd the 
drift may contribute •o crea•e an •ctive conductivity (Re a • 0). The necessary 
equations •re the equation of mo•ion 

nv = --•.n(E q- v xB) -- D. V' n 

and the equation of continuity 

(3.73) 

Eox Fig. 7. Coordinate system used in the deriva- 
tions of instability conditions for subsections 

3.1e and 32a. 
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•-• q- V'(nv) = --•tn (3.74) 
where •, is the electron mobility (=e/•,,m,), D, is the electron-d•usion constant 
(=v•,•/•,), •, is the electron-neutral collision rate, v•, is the electron thermal 
velocity, and • is the recombination frequency, which we assume to be negligibly 
small. The inertia term * is ignored in equation 3.73 because we consider a low- 
frequency range where 

The unpe•urbed quantities, for which we use subscript O, are obtained from 
equations 3.73 and 3.74 as 

Vo, = --•,Eo, (3.75) 

•D, -- •,Eo, (3.76) Vo• = 1 

Vo, = •,Bovo• (3.77) 

where g shows the magnitude of the density gradien• 

d(ln no) > 0 (3.78) 

For •he perturbed quantifies, we assume a phase factor of exp •(k. x- •), 
and use subscrip• 1. The assumption of a longi•u•nal disturbance allows us •o use 
a scalar potential • for •he electric field 

E• = --ik• (3.79) 

Then we can solve equations 3.73 and 3.74 for the perturbed density n• in terms of 
the perturbed potential •. Substituting the result into the definition of longitudinal 
conductivity shown in equation 2.30, we can obtain the electron conductivity as 

O•eo%,,2(iko '• q- 
a, = k,•[i•,,(oo _ k.v•) -- v•,,'•ko •'] (3.80) 

v•. is the unperturbed velocity owing to the electric field, namely, 
g,Eo• g,Bog,Eo• 

vr = --•,Eo,e, i + •,•Bo i + •.•Bo 
and 

kx '• + k, '• 
ko '• = kz '• + i q- 

The active range of a, can be immediately obtained from the condition that 
Re a, < 0, and is given by 

0 < •o < k-v• + w,* (3.813) 

where 

oo,* = Kv•,"k.,/oo,, (3.81b) 

Thus, from equation 3.813, we can see that both the electric field drift and the 
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diamagnetic drift (due to the density gradient) contribute to make a. active, 
provided that the direction of the electric field is in its favor, i.e., if k. vr > 0 for 
the direction of k such that (M* > 0, namely if the y component of vr is positive. 
For example, if we take the ambipolar electric field, which at the limit of T• = 0 
is given by 

(M e •B 0 

E0x = k•(1 d- •,•,Bo") > 0 (3.82) 
the y component of v• becomes, when •,ko • 1, 

Eo• 
v• = Bo < 0 (3.83) 

Therefore, the ambipolar electric field, which is directed in the positive x axis 
0.e., Eo. Vno • 0), has • stabliiz•tion effect (reducing the active nature of a, pro- 
duced by Vno). However, an externally applied electric field that is directed in 
the negative x axis (Eo. Vno • 0) enhances the instability [Simon, 1963]. On the 
other h•nd, any electric field in the z direction enhances the instability for a wave 
with k •rected such that k.E • 0. 

Now, what kinds of instability will be expected to result from the active 
conductivity a,? We presume that cold ions in the pl•sm• will constitute the 
passive conductivity; by •ssu•ng a quasi-neutral condition, we c•n ignore the 
conductivity of space (i.e., -iweo). First we can consider a low-frequency insta- 
bility, where w (( w,• (C •. For such • case, the ions constitute a simple resistive 
medium whose conductivity is given by 

a, = eow,,•/•, (3.84) 

where • is the ion plasma frequency. The condition for the instability is given 
from equations (2.33) and (2.35a) as -Re (a•) > •oo?/v•, a• Im (a•) = 0, for 
• % 0; or, explicitly, 

•- • -- i > 0 (3.85) •,k • k ko D, •i 

When Eo• is the ambipolar field, equation (3.85) reduces to ½he condition of the 
collisionM helical instability •s derived by Kadomtsev [1965]. Because the 
arebipolar electric field has a s½abilizing effec• (kyVry < 0), ½he insSabili•y con- 
dition, equ•½ion 3.85, is s•tisfied only in the presence of Eoz. However, an insb•- 
biliCy is possible even in ½he absence of Eoz, if Eo• is applied externally. The 
related insCabilifies have been discussed by Bu•eman [1963] •nd by Sato and 
Hatta [1966] and •re applied to the ionosphere by Tsuda et al. [1966]. 

Next, we consider a relatively higher frequency region' .• >> ,r• >> •½, but 
• < •, where ½he ions constitute an inductive medium whose conductiviCy 
is given by 

= • + i•i 

If • • •, we can still use •he quasi-neutral assumption, where • contributes 
•o •he passive conductivity a•. Because .a• is now inductive (not resistive), either 
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'drift' or a 'density gradient' is sufiicien• to cause an instability. Le• us firs• 
consider •he effec• of the density gradien• and assume tha• •here exists no elec- 
tron drif• parallel to Bo. The instability condition is obtained similarly 

izilz6Bo 
I •- g•geBo 2 o•* > k,c8 (3.87) 

where c8 is the ion sound velocity [- (mev•,2•m•)•/r]. The related instabilities 
have been discussed by Moiseev and Sagdeev [1963]. 

We next consider the effect of drift alone. We neglect the density gradient 
and instead introduce a uniform electric field Eo in the xz plane. The condition 
of instability is then 

--g6(Eo,k, + Eo•k,/g,Bo) > (k, • + k•,•)•/•c, (3.88) 

Equation 3.88 represents •he ins•abiliW condition of an ion sound wave in 
collisional plasma, in con•ras• •o equation 3.18 for a collisionless plasma. I• is 
interesting to no4e •ha• in borah cases •he ins•abiliW condition is givea by 
vo(= electron drif• speed) > 

3.2. Coordinate Space' Instabilities 

In this section we consider plasma instabilities for which • nonuniformity 
of the plasma distribution in space is necessary. We consider instabilities in which 
the driving free-energy source is entirely in the nonuniformity itself (often called 
universal instabilities because a plasma of a finite size is subject •o this effect), as 
well as those in which •he free energy is in some other agency, but requires •he 
nonuniformity to. conver• it in•o driving energy for •he instability. 

One aspect of an instability of this kind has been shown in subsection 3.1e, 
where a density gradient is shown •o produce a wave called the drift wave, whose 
frequency is given by 

3.2a. Drift-wave instabilities. In the presence of a density gradient, the 
equilibrium Vlasov equation for a particle with charge q and mass m •akes the 
form 

OIo -q (VXSo) + m = 0 (3.89) 
As shown in Figure 7, we take the density gradient in the negative x direction 
(density decreases in the positive x direction). Then the general soluton of equa- 
tion 3.88 can be written as 

]o(V, x) = •o.(•., v,)g(x q- v•) (3.90) 
where the function g represents the space-dependent part of •he distribution 
function. We assume •he following form for g: 

g x+ v' = 1-• x+ v• (3.91) 
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where .• is the measure of the density gradient defined in equation 3.78. • If we 
assume an electrostatic perturbation, the perturbed distribution function f• obeys 
the following linearized Vlasov equation: 

(•fl Ofl q- (•' X B0) (•fl q (,(•f0, (•f•l Kf0, •(/•1) (3,92) 0'-• q- V.•xx q- m 'Ov - m \ Ov ' Ox a•c Oy 
One can integrate equation 3.92 in the same manner as before. In particular when 
for is given by a Maxwelltan distribution 

I - 

fOr(V)2 = (2wvT2)i?•.•exp (--2-••) (3.93) 
the corresponding electron and ion conductivities can be expressed using equa- 
tions 3.7 and 2.30 [Hasegawa, 1968]: 

(3'1 (M e $ Z 1/'•'k [ [ •) T 6 ' 0'6 '-- k2t•y62 E In(•'e) e--y'e I + (2)l/2kll•Te (2) 

• • In(Xi)e-Xi 1 + (2)i/Sk•,v• Z 2)x/• k 
where Z is •he plasma dispersion function defined in equation 3.29, I• is •he 
modified Bessel funcSion of •he nth order, and •he argumen• of I• is 

(3.94a) 

(3.95a) 

X= (kzv•'l• (3.96) 
The drift-wave frequencies •e • and ,o• • have been defined in equation (3.81a). 

When we consider a low frequency (• ~ •e • << .•ce) and long wavelength 
(he << 1) range, the electron conductivity simplifies to 

2 1 + w -- we* Z •/2• (3.94b) •' = k•v•, (2)•:•k•,v•, (2) ,v•,' 
Because Im Z > 0, Re ere becomes negative for • < .•e '•. That is, for (o less than 
the diamagnetic drift-wave frequency, the electron conductivity becomes active 
(negatively dissipative). The effect is quite similar to the two-stream case dis- 
cussed in subsection 3.1a in that the Doppler-shifted wave undergoes inverse 
Landau damping, if we replace kovo by •'. 

Instability occurs by the coupling between the negative dissipation produced 
by the electrons and the ion drift wave. Because ion Landau damping contributes 
to s•abilization, instability is possible for a wave wit.h parallel phase velocity 
•,/k, much larger than the ion thermal speed, v,r•. For this range of parallel 
phase velocity 

x Because •o > 0, • must be sufficiently small that g > 0. More specifically, [•v,,/•oc[ < 1 
for each species. The condition imposed on the value of x to make g _>_ 0 can be eliminated by 
considering a suitable WKB treatment [Mikhailovskii, 1967], in which case the expansion of 
g shown in equation 3.91 is not needed. However, the results are identical to those of the 
present approach provided k. >> •. 
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a• (3.97a) 

-- . a• -- a•* (3.97b) 

--•a•o%,• a• q- a• -X'Io(X•) (3.95b) - a 1--•e o'i -- k2tY Ti •. 

The dispersion relation can be written, by assuming quasi-neutrality condition 
(i.e., neglecting the space dielectric constant) 

ai + a• = 0 , (3.98) 

From the imaginary par5 of equation 3.98 we can obtain •he wave frequency • as 

w'*e-X'Iø(h•) (3.99) 
[1 + (T•/T•)] -- 

and the instability condition is obtained from Re a < 0 for • given by (3.99)' 

(1 + •5)e-•"o•, - (1 + k)<0 •.100, 
. 

Since electrons and ions have the same density gradient •, w•*/w•* = T•/T•. Also 
e-X•Io(k•) < I for a finite value of the ion cyclotron radius v•/w•(k• • 0). Hence 
the instability condition is always satisfied. This means that whenever a plasma 
has a density gradient it becomes unstable for a wave whose parallel phase velocity 
is between the thermal velocities of ions and electrons. For this reason it is called 
the Universal instability [Moiseev and Sagdeer, 1963]. 

When we apply this instabiliSy •o the magnetosphere, we should be careful 
abou• •he following •wo points. First is •he effect of finite •. When • • m•/m;, 
parallel mo•ion of the pa•icles bends the magnetic field and exci•es shear Alfv•n 
wave. Then •he above analysis mus• be modified •o include •he effect of •he 
coupled shear mode. This was done by Mikhailovskii [1967]. The result shows 
•ha• the condition of instability remains •he same, bu• a condition arises •hat 
gives a maximum growth ra•e for k•, i.e., k, va • (2)•/a• '•'. When • is further 
increased, the drif• wave instability can be shown •o be s•abilized completely 
when • > 0.13 by the ion Landau damping [Kadomtsev, 1965b]. 

The second point that is important in the magnetosphere is •he effec• of cold 
electrons. If cold electrons whose density is no• are mixed in, we have •o add •heir 
cOnSribution to equation 3.98. The conduct, ivi•y of •he cold electrons a• can be 
obSained from equation 3.27 by taking •he limit as T • 0 

a• = iw½o • k,g• + w• k•aq (3 101a) 
where .• is the plasma frequency of the cold electrons. At .• • • << • •he 
second te• can be shown to be negligible, and a• is given by 
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2 

w•. k •. (3.101b) 
Even for a relatively small density, • is very large. Hence so is a• and adding 
such a large a• to equation 3.98 completely changes •he nature of •he wave. This 
is because of the low iner•i• of the cold electrons, which can thus short-circuit 
the parallel electric field. If one works out •he condition of the instability under 
this circumstance, by requiring a real • solution from the real part of •he disper- 
sion relation, i• is given by 

no• • T• (3 102) •o • • ' 
where % is •he ho• plasma density and a is a number of •he order of (•/•)•/• 
[Hasegawa, 1971b]. Equation 3.102 shows that the drift-wave instability pro- 
duced by a hot plasma is stabilized by a fractional mixture of cold electrons. 

Hence we conclude that the occurrence of the drift-wave instability in the 
magnetosphere is rather rare, either because of ion Landau damping for a high fi 
situation, or the short-circuiting by cold electrons even for a low fi situation. 

Drift-wave instability of the compressional (magnetosonic) mode given by 
the dispersion relat.ion equation 3.61a may, however, be possible. In the case of the 
compressional mode, the transit-time damping replaces the Landau damping of 
the electrostatic mode discussed above. Because the transit-time damping is 
proportional to B, the cold electrons do not contribute to the dispersion relation. 
Besides, the effect is manifested in high fi situations where the electrostatic drift 
mode is stabilized. The drift-wave instability of this compressional mode has been 
treated by Mikhailovskii and Fridman [1967] and by Hasegawa [1971c]. 

3.2b. Instability due to curved field lines: gravitational instability. When 
the magnetic lines of force are not unifo•, plasma trapped on such field lines 
may become unstable. When the field lines are straight, the instability is closely 
related to the one due to the nonuniformity in the plasma pressure shown in sub- 
section 3.2a. Such a field configuration is inevitably a consequence of nonuniform- 
ity in pressure if the plasma and field are in pressure equilibrium, i.e. 

V[(Bo•/2•) + nkT] = 0 (3.103) 
The instability associated with this case has been trea•ed by Krall and Rosen- 
blurb [1963] and more recently by Mikhailovskii and Fridman [1967]. 

When the field lines are curved, •he particles moving parallel to the field 
lines see a centrifugal force. This force may produce an instability for the outer 
boundary of the plasma where the density decreases radially. This is equiva.lent 
•o the gravitational instability of a heavy fluid on top of a ligh• fluid, if we 
equate the centrifugal force wi6h gravi6y. In the plasma, the instability is often 
called the flute instability because the mos• unstable mode has a flute-like 
perturbation, propagating perpendicular to the magnetic field (a field-aligned 
perturbation) [Rosenblurb and Lonemire, 1957]. 

Let us consider a plasma wi•h a similar geometry to •hat shown in Figure 7. 
We take the gravitational field g (which simulates the centrifugal force due to the 
particle motion parallel to the cu•ed field lines) to be in the positive x direction, 
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which corresponds to the direction of decreasing plasma density, i.e. 

g'•no < 0 (3.104) 

We assume •he plasma •o, be cold and collisionless and ignore de electric 
fields. Now le• us consider an electrostatic perturbation •ha• propagates in the 
y, z plane. The linearized equation of motion for ions •akes •he form 

where 

e 

--i•otv• - (--•k.e + v•, x Bo) (3.105) 
mi 

co' = co + kv• 

= co + k.g 
COci 

and kñ - ky, kll - kz. 
Solving equaSion 3.105 for •o << ma 

(3.106) 

ß Bo xki to • 
- • k• (3.107) vii = • Bo • •' Bow•i 

Substituting •his expression in•o the linearized equation of continuity, we have 

where 

d lnno 
•= •0 

dx 

For electrons, because the gravitational force produces li•le drift (smaller by the 
mass ratio •han tha• of the ions, although the electron drif5 can become com- 
parable •o the drif5 of the ions if cenSrifugal force is used), we have 

elect .... = •Bow m, 2] (a.108b) 
The dispersion relaSion is obtained by assuming quasi-neutrality (ignoring Lhe 
vacuum dielectric cons•anS) as 

kx + kxg/w•, - m• k kxw ] (3.109) 
Now if we assume an ideal fiu•e mode such •ha• k• - 0, •he unstable solution is 
easily obtained by assuming • )P k•g/.• and expanding •he firs5 •erm of •he 
left-hand side of expression 3.109 in powers of k•g/(•) as 

•o' + g•: 0 (3.110a) 
or 

ß 1/• 
½o = 4-•(g•) (3.110b) 
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Equation 3.110a, b corresponds to the growth rate oœ the classical gravitational 
instability. 

However, unlike classical fluids, the anisotropic nature of the plasma con- 
ductivity produces an interesting stabilization effect if k, =/= 0. For example, as in 
the case of magnetospheric plasma, if the field lines are connected to a conduc- 
tive region perpendicular to themselves (the ionosphere), the charge separation 
perpendicular to the field lines that drives the instability is short-circuited by the 
large electron conductivity in the, parallel direction in a way similar to the case oœ 
the driœt-wave instability. This effect is. represented by the second term on the 
right-hand side of expression 3.109. One can see from the previous argument that 
the unstable solution disappears when the right-hand side changes its sign. The 
stability condition then is obtained roughly as 

k,, (melt/2 (gK)•/2 (3 111) > ß 
Equation 3.111 shows that only a perturbation having small perpendicular wave- 
length (large kñ) grows under such circumstances. 

On the other hand, it is known that the gravitational instability is sta- 
bilized for a short perpendicular waveleng[h compared to the ion cyclotron radius 
[Lehnert, 1961] because of the neutralization of charge separation due to the 
finite size of the ion cyclotron radius. The stabilization condition due to this finite 
cyclotron-radius effect can be obtained by using the Vlasov equation as in subsec- 
tion 3.2a, including the gravitational force. The stabilization condition then reads 

g• < ½,*):•/4 (3.112a) 

where •? is the ion drift-wave frequency. Using g = T•/m•R where R is the 
radius of the curvature of the field line, and T• is the ion temperature in energy 
units, equation 3.112a can be expressed also as 

k•.•p, •' > 4/•R (3.112b) 

where p•(= v•/,•) is the ion Larmor radius. Therefore, the gravitational insta- 
bili[y is stabilized for a long wavelength perturbation by •he short-circuiting of 
elec[rons moving rapidly parallel to the field lines, and for a short wavelength 
perturbation by the fini[e cyclotron radius efteel of ions. 

If one can assume a model in which the ionosphere is a perfect conductor 
at a, low frequency regime (• << ,•), one, can see that by combining equations 
3.111 a.nd 3.112b, the gravitational instability is stabilized for a perturbation of 
any size if 

Rkll > xm--•./ (3.113) 
The parallel wave number k!l is lower-bounded by •r over twice the length of the 
field line (-• rr/LR• where L is the equatorial crossing distance in units of earth 
radii, Rr). Thus kll > •r/LRr, whereas the radius of curvature R ..• LRr/3. Hence 
equation 3.113 is always satisfied. This result indicates that the magnetospheric 
plasma may be stable against the gravitational instability. (In reality, however, 
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because the cold electron density no• is different from that of the hot proton den- 
sity no, [he righi-hand side has to be mul[iplied by (no/no•)•/•. Also no[e [hat we 
have assumed thai the ionosphere is a perfect conductor perpendicular to B.o.) 

3.2c. Kelvin,-Helmholtz instability. While the drift-wave ins[abili[y arises 
purely because of •he nonuniformity of a plasma, the gravitational instability 
øccurs because of •he nonuniformity plus the gravitational field. The latter is 
•he analogy of the classical Rayleigh-Taylor instability. Another classical ins[a- 
bility similar •o this is the Kelvin-Helmholtz instability. This ins•abiliW requires 
nonuniformity plus a shear flow of fluid. Such an instability also occurs in a 
plasma and may be applicable to the magnetospheric boundaries or •he charged 
layer in the aurora's sheet. 

Here we consider an example of the electrosfslic Kelvin-Helmhol•z insta- 
bility produced by a shear flow due to an E (nonuniform) cross Bo (uniform) 
drift of a plasma. The nonuniform electric field is a consequence of a nonneutral, 
charged shee[ as shown in Figure 8. As an example, we take an elec[ron shee[ 
wi•h thickness 2a placed with ils surface parallel to the uniform magnetic field. 
Because of •he negative charge of elec[rons, a steady electric field is directed 
•oward [he cen•er of •he shee• and produces a shear flow Vo(X) (= Eo(x)/Bo) 
having a value at x = - a 

vo(a) ---- Vo (3.114) 
Vo(-a) -- -Vo 

We will now consider the surface wave created by the surface charge if we have 
an undulating boundary a• x = 4- a. The surface wave is generated only by •he 
charges a• •he surface. The electrostatic-field equation is thus the Laplace equa- 
tion for •he electrostatic potential 

V• = 0 (3.115) 

meaning that the wave we consider is an incompressible mode. Equation 3.115 
has a general solution for a two-dimensional system such as that shown in Figure 
8, given by 

Hence we choose 

,-• ei(ky-a•t) ñk• ½• .e (3.116a) 

•(x > a) = Ae'(•"-"t)e 

•(-a < x < a) = e'(•-•'t)(Be• q- Ce -•) 

•(x < --a) = De•'•-•e• 

(3.116b) 

•o 

Bo© Eo e o y •' e e •o<X < o•-• W 
___1._ __:e_e___ {-_,:, 

Fig. 8. Negatively charged sheet in a magnetic 
field Bo. The nonuniform electric field in the 
sheet generates a shear flow ñVo at x -- ña. 
A perturbation at the surface gives rise to a 
surface charge that leads to the Kelvin-Helm- 

h o ltz instab ility. 
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The boundary conditions a• ß - -+a are (1) the con•inuiW of •he •angen•ial 
electric field E• - O•/Oy and (2) the discontinuity of the normal electric field 
by •he amount of the surface charge p•, i.e. 

0•11 0• i = p.(a) OX •+ OX •- •o (3.117) 
0(•1 0(•1 p,(-- a) 

__ 

Ox •_,_• + Ox -•- - •o 

where •, can be ob[ained from the equation of continui[y 

On• 
Ot q- •'-(n•vo q-noV•) = 0 (3.118) 

Following Buneman et al. [1966], we consider here a low-frequency perturbation 
such that w << w•. Then [he perturbed velocity v• in equation 3.118 can be expressed 
simply by : 

E• x Bo 
v, = Bo a (3.119) 

We consider an electrostatic perturbation, •' x E• = 0, hence from equation 
3.119, V-vx = 0. Equation 3.118 then can be reduced to 

On• 
Ot q- %' •n• = --v•. •no (3.120) 

By substi[uting equation 3.119 into equalion 3.120 we have for the number- 
density perturbation nx 

nx(4-a) = k•pl i Ono w =1: kvo B• Ox (3.121) 
Now, if [he charged shee[ has a sharp boundary a[ x - --4-_ a as assumed, no (x) 
has [he form of a uni[ s[ep function U (x), which may be wri[ten 

no(x) = no[U(x q- a) - U(x - a)] (3.122) 
then 

Ono_ no[$(x q- a) - $(x - a)] (3.123) Ox 

Hence, the surface eharge densiW p• can be obtained from equations 3.121 and 
3.123' 

ps(+a) = +eno kgh (3 124) •o co 3: kvo ' 
The dispersion relation can be obtained by applying boundary conditions that 
are given by equation 3.117, and the continuity of ½•, to the solution of the 
Laplace equation (3.116b); 

40/ ( 2kvol• --4ka --• - 1 -- -- e (3.125) 
(.Oo o• o ! 
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where 

eno 

•o - eoBo •c, 
'The dispersion relation derived here has an identical form to the one for an 

incompressible fluid [Chandrasekhar, 1961]. The instability occurs when the 
right-hand side of equation 3.125 is negative, or for the wave number k satis- 
fying 

2ks <• 1.3 (3.126) 

Therefore, the instability occurs when the wavelength in the direction of the shear 
flow is comparable to or longer than 2•r times the width of the charged sheet 2a. 
The consequence of the instability is the deformation of the sheet into periodic 
curls [Hallinan and Davis, 1971] around the magnetic lines of force. Since the insta- 
bility of a charged sheet grows for the wave propagating in the direction of the 
shear flow, for an electron sheet the curls produced by the instability will be in the 
clockwise direction looking in the direction of the magnetic field. On the other hand, 
for a sheet of positive ions, although the direction of the shear flow is given by the 
same formula, E x B, the direction of E is reversed; hence so is the direction of the 
curls. For either case, the curls are formed in the direction of the cyclotron motion 
of the particles (see subsection 4.3). 

The Kelvin-Helmholtz instability, which may be applicable to the magneto- 
spheric boundaries, has a different character, although in principle the instability 
is the same kind. In the case of the magnetospheric boundary, one has to con- 
sider two. plasmas with different flow velocity tha.• are in contact at a surface 
parallel to the flow. The excited mode is the AlfvSn wave. Here I do not introduce 
the details of this case but suggest references [Boller and $tolov, 1970; Sen., 1965; 
Southwood, 1968; Talwar, 1964]. 

$2d. Instabilities o• current pinch. In this subsection, we consider insta- 
bilities driven by a current in a plasma of finite cross section. As we have seen in 
subsection 3.1a, a current produces a two-stream instability even in a uniform 
plasma. In that case, the threshold velocity of the electrons was given by the 
ion sound velocity. For a current in a plasma with a finite cross section, extra 
free energy is available from the nonuniformity in space; therefore the threshold 
of the instability can become lower. One such example was shown in subsection 
3.1e for the electrostatic mode in a collisional plasma. 

First let us consider a plasma with circular cross section. Three kinds of 
deformation of such a circular pinch are considered in Figure 9. The first case, 
case a, is called sausage-type instability. The azimuthal magnetic field Bo• pro- 
duced by the current Io becomes stronger at the neck point because Bo• ~ 
•olo/2•; hence the perturbation tends to grow. The threshold condition for the 
instability is obtained as follows. For a shear mode, plasma moves with the 
magnetic field; hence the total flux inside the plasma is constant 

r•Bo, = const (3.127a) 
where Boz is the axial magnetic field. The change in Boz associated with the change 
in radius r of the plasma column is then given by 

_ 
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Bo Bo 

Fig. 9. 

(3) SAUSAGE b) KINK C) HELICAL 

Various shapes of instabilities of cylindrical current 
pinches. 

2dr 
$Boz = -Boz '-- (3.127b) 

r 

On the other hand, the associated change in the azimuthal magnetic field Boo is 
given by 

dr 
aBo• = -Boo -- (3.128) 

r 

because the current Io is constant. The total change of the magnetic-field pressure 
directed inward is then 

(3.129) 

The instability condition is simply that the change in the magnetic pressure 
associated with an increase of radius dr is negative. Thus the pinch is unstable 
against the sausage-type perturbation when 

Boo 2 > 2Bo• 2 (3.130) 
The stability condition for the kink-type perturbation shown in Figure 9b 

can be obtained in the same way, and the condition of the instability for such a 
ease becomes 

where L and a are the length and the radius, respectively, of the current pinch. 
In the magnetosphere, field-aligned currents have often been observed during 
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substorm times [e.g., Zmuda et a•., 19.66; Cummings and Dess•½r, 1967; C•out•½r 
½t a•., 19.70]. However, the maximum horizontal field Boo produced by this cur- 
rent is oœ the order oœ 10 '• y(y -- 10 •5 gauss), which is less than one-tenth oœ the 
geomagnetic field Bo•. Therefore, the instabilities of type•a and b discussed above 
are unlikely to occur. 

However, the instability of type c in Figure 9, the helical type (also called 
kink instability) is quite likely to occur because of the much lower threshold. 
The threshold condition of the helical-type instability will be shown later to be 

Bo• > 2_• Bo, (3.132a) 
While the instabilities of type a and b are primarily due to thepinch effect (com- 
pressional effect) of the current-generated magnetic field, the type c instability is 
due to the tension of the field lines that are bent into a helical shape by the current. 
When the tension of the bent field lines causes them to tend to straighten, the 
current tends to deform them into a helical shape. 

Let us derive here the condition of the instability, equation 3.132a, following 
Kodomtsev [1966]. We assume that the plasma is collisionless and hence has an 
infinite conductivity. In such a case the current flows only at the surface of the 
column. Furthermore, we assume an incompressible perturbation (perturbation 
corresponding to the shear Alfv•n mode). Because we consider only a long-wave- 
length and low-frequency perturbation, we can use MHD equations. If we assume 
incompressibility, the density perturbation m = 0 and the velocity perturbation 
satisfy V.v• = 0; the necessary set of MHD equations for perturbed quantities 
are given by 

dvl 
m•no • = J• x Bo - Vp• (3.133) 

V x B• = po$• (3.134) 

E, + v• x Bo = 0 (3.135a) 

•B• 
V x E• = O t (3.136) 

where we have used the same symbol identifications as before. In equation (3.133), 
the term Jo x B• is dropped because of the assumption that the de current is 
concentrated only at the surface. The total derivative of v• in the same equation 
has to be identified as equal to the partial derivative because the plasma as a whole 
is not moving. Then if we use a displacement vector • instead of the velocity v• 
defined by 

v• = O•i/Ot 

equations 3.133 to 3.136 reduce to 

+ : I.•o ! 

(3.137) 

B.Bo + P'I (3.138) 
while from equations 3.135a and 3.136 
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B -- V x(//xBo) -- (Bo.V)• (3.139) 

if V.// = 0 (ineompressibility) and Do = const (Jo = 0 inside the plasma). In 
deriving equation 3.138, we assumed an e • dependency on z (axial direction). 
The boundary conditions needed for the problem can be obtained as follows. If 
we •ite the external magnetic field •nd its perturbation by Bo • •nd B• • respec- 
tively, the condition of total pressure balance gives 

I 1 

po + p• + • (Bo • + D• 2) = • [(Do') • + (D•') •] (3.140) 
In our case the unperturbed pressure po is constant in space and time, and hence 
the perturbed pressure is zero because of the incompressibility. We evaluate 
equation 3.140 at a displaced boundary at (r = ro + • = ro + $,n) to obtain the 
boundary condition for the perturbed equations, where n is the normal vector at 
the surface, and •, is the normal displacement. Expanding equation 3.140 into 
powers of the perturbed quantities and retaining linear terms, we obtain one of the 
boundary conditions 

0.o' •o - •o • L On On (3.141) 
The second boundary condition is obtained from the vanishing tangentiaI 

component of the electric field seen by the plasma because of the assumed perfect 
conductivity of the plasma, that is 

E• + (v• xBo*)• = 0 (3.142a) 

where subscript t indicates the tangential components. Using equations 3.13• and 
3.137, •he above expression can be reduced to 

n-B•' = n-V x (• x Bo *) (3.142b) 

Now let us solve equation 3.138, subject to the boundary conditions given by 
equations 3.141 and 3.142b, for a plasma column of a circular cross section with 
radius a. If we take the divergence of equation 3.138, because we assume an incom- 
pressible perturbation, V-• = 0, and noting that p• = 0 

•(•'•o• V x Uo / = 0 (3.143) 
which can readily be solved, and 

B-Bo 
- A. e (3 144) ß 

where I, is the modified Bessell function of the first kind •nd A is the integration 
constant designating the wlue of B.Bo/•o at r -- a. The r•dial displacement •, c•n 
be obtained by substituting equation (3.144) into (3.138) 

•zok 
•r(r) - o•2m•no _ k2Bo 2 A l,(ka) (3.145) 

Outside the plasma, we h•ve Y xB• e -- 0, •s well •s V.B• e = 0; hence B• e can be 
expressed by Y•, where Y2• = 0. The solution of • bound at infinity is 
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CK•(kr) 
•P - K,,(ka) (3.146) 

where Kn is the modified Bessell function of the second kind, and C is the integration 
constant. 

Now we use the boundary conditions. First we take the pressure balance 
condition, equation 3.141. Outside the plasma, the unperturbed magnetic field Bo e 
has axial and azimuthal components Bo, e and Bo0 •. Since Bo, • is assumed uniform, 
while Bo0 • •0 1/r 

_0 [(Bo,•),. q_ (Boo')"] = --2[Boo'(a)]"/a 
Or 

a[ [he boundary r = a. Then equation 3.141 gives 

A =i(kBoz,+ n ) (Boo') 2 •o • Boo C •,(a) (3.147) /•oa 

In a similar way, the other boundary condition, that of vanishing tangential elec- 
tric field given by equation 3.142b, gives 

( n) Kn'(ka) (3148) i kBo, e q-• Boo • •r(a) = Ck Kn(ka) ' 
Combining equations 3.145, 3.147, and 3.148, and eliminating &(a), A, and C, we 
obtain the following dispersion rela[ion 

n )2 Id(ka)K,(ka) (Boo')2k Id(ka) uom,nooo '• = k"Bo"-- kBo• • q-• Boo' I•(ka)K•'(ka) -- a l•(ka) (3.1493) 
For instability, the right-hand side has to give a negative value. The first and 
the second term are positive because KdKd < 0, while In'fin > 0. Hence it is the 
last term on the right-hand side that gives rise to an unstable solution. This 
negative contribution originates from the fact that (O/Or) (Bo, 2) < 0; namely 
that the external magnetic field pressure decreases against radial displacement 
of the plasma column. 

For field-aligned currents in the magnetosphere, we can assume Bo• * >7 Boo*. 
In this ease a long wavelength perturbation characterized by ka << 1 can lead to 
an unstable solution. At small ka, Id/I,• = n/ka, Kd/K• = - n/ka; thus the 
dispersion relation reduces to 

•om,nooo • = k"Bo" + (kBo• + n ')• n(Boo') 2 • Boo -- a • (3.149b) 
One can see from equation 3.149b that a perturbation of the azimuthal mode 
with n - I is unstable (helical perturbation), and the condition of instability 
can be found as ]k] > Boo/a Boz or 

Boo 2•ra 
Bo• > 'L (3.132b) 

,. 

the form presen[ed before. 
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We now shift our interest to the pinch of an infinitely extended sheet current. 
In this case none of the above instabilities for cylindrical pinches is known to occur 
because all of those instabilities originate from radially decreasing magnetic field 
pressure, whereas in the case of a sheet current the external magnetic field generated 
by the current remains constant. We will now consider this problem in relation to 
the instability of the neutral sheet in the magnetospheric tail. 

That a neutral sheet is subject to instability was first pointed out by Dungey 
[1958] and elaborated later by Furth et al. [1963]. The instability is called the 
tearing mode instability. Consider a sheet current that is infinitely extended in 
the yz plane and flowing in the y direction as shown in Figure 10. Such a current is 
sandwiched by the self-generated magnetic field in the z direction that pinches the 
current to an equilibrium size. One can assume a perturbation in the current • 
and the magnetic field B• but can show that they produce a stably propagating 
wave if the plasma is assumed to be a perfect conductor. Only when the plasma has 
a finite resistivity does the instability set up. In this sense, the mechanism of the 
instability differs considerably from the instabilities of a cylindrical pinch. To show 
how the finite resistivity produces the instability, we rewrite one of the MHD 
equations, equation 3.135a, including the effect of finite resistivity, i.e. 

B• •- v• xBo -- vJ• = 0 (3.135b) 

where n is the plasma resistivity in ohm meters. From this expression we can see 
that the effect of finite resistivity becomes important at the neutral layer at x •,• 0, 
where the z-directed magnetic field Bo • 0. On •he other hand, at distances suffi- 
ciently far from the neutral layer, the v x B 6erin can dominate, and the plasma 
can be regarded as lossless. To understand the physical process of the instability, 
we hence choose a simple model in which the current layer is divided into two 
regions, that of resistivity at Ixl < e, and that of no resistivity at a > Ix] > e. 

Let us first consider the dynamics in the resistive region, Ix] < e. In this 
region E• may be expressed as v.l• from equation 3.135a. Then using Maxwell's 
equations 3.134 and 3.136, we have 

OB•_ • •B• (3.150a) 
Ot •o 

Equation 3.150a represents simply the skin effec• of the plasma. For an eigenfunc- 
tion of a form e •, equation 3.150a gives a solution with a negative imaginary 
part of •0, indicating dissipation of wave energy and no instability. However, ff 
the field solution at Ix[ • e allows a solution, through boundary conditions, such 

•JY z•_ 20 
e,y •..©e----- j,y _ 

Fig. 10. Coordinate system used in derivation 
of instability condition for sheet current. 
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or 

= -- x (3.164) 

If we now connec• •his solution a• x = e with B• obtained for Ixl < ,e in equation 
3.151, we can derive the growth ra•e 7 as 

q, = v/e:go (3.155) 

Although we cannot obtain an exact value of the growth rate from the 
above expression because • is a quantity assumed in the derivation, we can under- 
stand the mechanism of the instability from the above argument. The driving 
force of the instability is the nonuniform magnetic field such that Bo"/Bo < O. 
The instability occurs for a wave length in the z direction longer than the thick- 
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th• B• .-0 e • • Ixl < e, • positive imaginary • solution results. Anticipating such • 
case, we put, say for B• components, BI• • Bl•(X)e •'+•, and equation 3.150a 
becomes 

d lz k a + o BI•: 0 (3.150b) dx • 

which can immediately be solved and 

osn + o x (3.151) 

We now consider •he lossless region. From equations 3.135a and 3.136 we can 
express •he x component of velocity perburbation by B• as 

ikvx•Bo = 7Blz (3.152) 

where Bo = Bo(x) is the dc magnetic field produced by the sheet current. 
Another equation that relates Vl• and BI• c•n be obtained from equations 3.133 

and 3.134; the pressure-gradient term is eliminated by taking the curl of equation 
3.133. Assuming incompressibility, •.vx = 0, and using •.B = 0, we can derive 
the following equation 

dx • •]Bx, - •¾• ]•Bo ] 
which can further be reduced, for a small gro•h rate 7 •<< kaa •, •o 

d•B'• - • + B•: 0 (3 153•) dx • • ß 
where Bo" is •he second derivative of B.o with respec• •o x. If Bo is uniform so 
tha• Bo" = 0, equation (3.153b) simply shows •he elec•roma•e•ic cutoff mode in 
space. However, for a nonuniform sheet curren• confined within Ix I • a, B.o'"/Bo 
can be seen •o become negative. Equation 3.153b then admi• a sinusoidal solu- 
tion for small k. For example, if we write Bo"/Bo • -- X -a •he equation becomes 

•,• (•) dx• + •- • B• = 0 (3.153c) 
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ness, i.e., k < 1/X -• l/a, and for a plasma with a finite resistivity v. As a con- 
sequence of the instability, x-type neutral points tear the sheet current into a 
number of smaller segments. 

The magnetospheric tail can hardly be considered as •'resistive'; therefore 
one might conclude tha.t the tearing mode instability is not applicable there. How- 
ever, if one takes into account the Landau damping caused by interactions 
between waves and warm particles, the tearing mode may become possible [Coppi 
et al., 1966;Hob, 1966]. 

3.2e. Resonant wave-particle interactions. In this final subsection of chap- 
ter 3, the nature of various wave-particle interactions and their relation to 
resonant-type plasma instabilities are presented. Some of them are strictly 
velocity-space effects, whereas others are coordinate-space effects. Itcnee they 
are slightly off the general topics of this section. 

The importance of the various resonant frequencies for a particle trapped 
in the geomagnetic field has been discussed by Dungey [1964]. The linearized 
Vlasov equation that represents the particles trapped in the geomagnetic field has 
a form 

all t•fl q B0) of 1 q [E• -+- v x B•] at -+- v.•-• -+- -- (v x ...... (3 156) m Ov m Ov ' 

As was mentioned in subsection 3.lb, the Vlasov equation can be integrated 
along the trajectory of the particle and 

m 

The unperturbed trajectory of a particle may be given by 

(3.157) 

x' --• vt• + v•t + --- cos (•t' + 0) (3.158) 

for 

2•r(n -• 1) > o•bt' > 2•rn 

2•r(m + 1) > o•dt' > 2•rm (3.159) 

x' v,,' cos (•,t' + 0')+ 0• 0") --•--- -- cos (.,.t' + 
(..0 b O) d 

for t from --•o to 2•rn/•ob or from --•o to 2•rm/•od where m, n are integers. In 
equations 3.154 and 3.155, v,'t' represents the motion parallel to Bo from the last 
bounce at the mirror point, /)•t the gradient and curvature drifts (not the diamag- 
netic drift) from the last periodic longitudinal revolution, v.'/•oc cos (o•ct' + O) the 
periodic cyclotron motion, v•'/o•, cos (o•,t • + 0') the periodic bounce motion, and 
/)•/•0• cos (o•t' + 0")the periodic longitudinal (azimuthal) motion around the earth. 

If one assumes the space-time dependence e •(k'x-•'• and uses 

, .... 0 
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the integration over t along the trajectory produces qualitatively the following 
expression for Ix' 

f Fo(v) dv f Go(v) dv • "'" •o kllvl• k.• l•o• q- (3.160) 
where Fo(v) and Go(v) are functions of velocity. Note here that the cyclotron 
frequency •o• is not velocity-dependent, but that 9•, the bounce frequency •o•, and 
the longitudinal drift frequency •o• are all velocity-dependent. When integration 
over v is performed along the real v axis but below the poles as was shown in 
subsections 3.1a and 3.1c, this resonant denominator produces the imaginary part 
of the dielectric constant. This represents the wave-resonant particle interaction. 
Depending on the nature of Fo(v) or Go(v) at those resonant velocities, the direction 
of the energy flow (from the psrticle to the wave or from the wave to the particle) 
is decided. For example, we know already that from subsection 3.1a at •o --• kllv, or 
from subsection 3.1c at •o - lo• • kllvll such a resonance occurs. From the above 
expression, there are additional resonances at •o --• k.9•, •o --• m•, and 
that can in the same way contribute to produce resonant wave particle interactions. 
Note, however, that these resonances occur when a wave with a frequency • is 
given • priori. Then particles whose velocity or energy agrees with the resonant 
conditions can exchange energy. This resonant condition does not determine the 
wave frequency itself (does not contribute to the real part of •). Only when the 
particles are distributed very narrowly in energy does the resonant frequency 
determine the wave frequency. Berk and Book [1969] have shown that if •o• is 
energy-independent (for example, a particle trapped in a parabolic electrostatic 
potential well), then the pole produced by •o = kv, (Landau damping) is canceled 
by part of the contribution from the second integral in equation 3.160, and only 
the (•o - m•o•) resonance remains to contribute to the real part of the dielectric 
constant. The energy-independent bounce motion, because of its precise periodicity, 
regenerates a wave that is at once Landau-damped. Also, as in the case of cyclotron 
waves, the bounce motion produces waves at multiples of the bounce frequency. 
However, in general, this does not apply for bounce motion in the magnetic field 
because •o• is energy-dependent. It is shown also by Berk and Pearlstein [1971] that 
when the spread in •o• due to the energy spread of the particles is larger than the 
•ver•ge •o• itself (i.e., if (•o• •) > (•o•)•), the regeneration does not occur •nd m(•o•) no 
longer contributes to the wave frequency through the real part of the dielectric 
constant. (A. Hasegawa and K. Nishihara have prepared data on instabilities 
associated with the bouncing particles in a magnetic mirror for publication in 1971.) 

Finally note that the diamagnetic drift-wave frequency •o* does not appear in 
the resonant denominator. This is because the diamagnetic drift is not the real 
drift of a particle. On the other hand, because the diamagnetic current does collec- 
tively contribute to the wave, •o* determines the wave frequency (contributes to 
the real part of •) and produces a new mode (drift wave). 

3.3. Summary 

A number of insSabilitics have been introduced in this part.. To. avoid pos- 
sible confusion, we summarize here briefly the nature of those insSabilities 
presented. 
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[3.1a] Electrostatic instabilities due to two-humped velocity distributions: 
k II So V•r• = 0 

Necessary conditions for instability' 

0-• > 0 for co 

v• > c, for w •< w• 

[3.lb] Electrostatic instabilities due to anisotropic velocity distributions' 
k; arbitrary direction, V' x 1;'. 1 = 0 

Necessary conditions for instability' 

or for 

Ofo. > 0 
Ova. 

[3.1c] Electromagnetic instabilities due to anisotropic velocity distributions' 

Necessary condition for instabili[y' 
Presence of current 

or 

T. •c 

[3.1d] Hydromagnetic instabilities due to anisotropic pressures. 

k; arbitrary direction, 

co <<coci kvri • coci •"E1 • 0 •' gel • 0 
Hose instability' 

Mirror instability' 

l- 5'. «(a,-a,)<o 
speoies 

1+ • /•. 1-- <0 
sl•eoies 

[3.1e] Instabilities in partially ionized plasmas: 

k; arbitrary direction, •xE• = 0 
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Necessary condition for instability: 
1. If w•r• << 1 Eo'Vno > 0 

2. 

[3.2al 

If wc•r• >> 1 we* > k.c, or k.vs > k.c' 
Drift-wave instabilities' 

Vno-type electrostatic drift wave mode, w N we* 

Necessary conditions of instability: 

Stabilization due to cold electrons or high • effect. 
[3.2b] Gravitational (flute, interchange, or Rayleigh-Taylor) instability' 

kA.Bo VxEx = 0 

Necessary condition of instability: 

g. Vno < 0 Im • • (g•) 

Stabilization due to cold electrons if field lines are tied to the ionosphere. 
[3.2c] Kelvin-Helmholtz instability: Only electrostatic (V x Ex = 0) ease 

with k A. Bo is introduced, but electromagnetic ease can also exist. 
Necessary condition of instability' 

2ka < 1.3 

[3.2d] Instability of current pinch' 
wN0 V.E• = 0 

Cylindrical pinch 
a. Sausage type' 

Boo z > 2Bo, z 

b. Kink type: 

Bo0"ln(•) > Bo• • 
c. Helical: 

2. Sheet pinch 

Tearing-mode instability: 

•0 

Boo > 2•___a Boz 

Nonuniform current 
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B. R•;vn;w OF MAGNETOSPHERIC PLASMA INSTABILITIES 

4. STABILITY OF PLASMAS IN VARIOUS PORTIONS IN THE 
MAGNETOSPHERE 

In this chapter, we review papers published on the stability of plasmas in 
various portions of the magnetosphere and its periphery. 

4.1. Stability of the Ring Current and Radiation Belt 

4.1a. Coordinate space instabilities. The s•abili•y of •he ring current (low- 
energy particles) and the radiation belt (high-energy particles) has been a classic 
subjec• in •he magnetosphere since their discoveries. The questions raised here are 
why is •he magnetospheric plasma so s•able, and under wha• conditions may i• 
become unstable? These are opposite •he questions we ask of mos• laboratory 
devices. We divide the question in•o •.wo groups by •he nature of •he possible 
instabilities, those in coordinate space or •hose in •heir velocity space. Because of 
its relatively large particle density, the ring-curren• particles, wi•h an average 
energy of around 10 key, ac• collectively. On •he o•her hand, •he radiation-belt 
particles, wi•h energies of Mev, ac• more or less as a group of noninteracting single 
particles. Therefore, while •he former group requires a self-consis•en5 treatment, 
•he la•er does no•, and a calculation of •heir wave-particle resonance wi•h •he 
wave carried by o•her groups of particles may be sufficient. This also means •ha• 
•he radiation bel5 particles may be mostly subjec• to velocity-space instabilities. 

Tha5 •he magnetospheric plasma is subject •o •he gravitational instability 
subsection 3.2b was first pointed ou• by Gold [1962] and Axfov•d and Hines 
[1961]. I• is called the interchange instability because •he gravitational insta- 
bility for plasmas in curved field lines causes interchange of the flux •ubes (cf. 
Figure 11). The •heory has been developed by Son•erup and Laird [1963], who 
used MHD-type fluid assumptions. They have considered isothermal and adia- 
batic interchange of flux •ubes, and concluded tha• the plasma is stable for 
isothermal interchange (no change in temperature during (he interchange) but 
may be unstable for adiabatic interchange (no change in hea• during the in•er- 
change) if the energy in the tubes of force decreases radially more rapidly •han 
r-•(v -x), where • is •he ratio oœ specific hea•s a•. constant pressure and cons•an• 

i FOOT OF 

THE TUBE B 
. 

ATMOSPHERE 

BI•FORE THE INTERCHANGE 

AFTER THE INTERCHANGE 

Fig. 11. Interchange of tubes of force of equal mag- 
netic flux in the earth's magnetosphere (after Son- 

nerup and Laird [ 1963]). 
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volume. 7 depends on the pitch-angle distribution, but on the average it takes a 
value •5/3, leading to the critical radial decrease of energy of r -s/s. 

However, as was pointed out in subsection 3.2b, if the line of force is con- 
nected to a conductor, there exists a strong stabilizing effect. The ionosphere, 
though it is not a perfect conductor, can serve to short-circuit the charge separa- 
tion needed to allow such interchange. Chang et al. [1965, 1966] have considered 
the effect of the ionosphere on the interchange instability using a phase-space 
treatment to overcome the difficulty of the MHD approximation in relation to 
the parallel electric field, and concluded that if adiabatic interchange is assumed, 
the critical radial dependence of the energy becomes r -7. However, if the condi- 
tion of adiabaticity is violated by a wave-particle resonance (such as mentioned 
in subsection 3.2e), the sufficient condition for stability is shown to be, considering 
the ionospheric conductivity, 

(/xf) m n_• >0.3 (4.1) Zno 

where Ar ~ 50 km, Rz (= earth's radius) ~6,300 km, m is the azimuthal mode 
number (integer), L is the radial distance in units of earth radii, n•; is the iono- 
spheric plasma density, and n.o is the proton density of the ring current. They 
concluded that the stability condition can be easily satisfied for the day side 
because of larger n•, but may be marginal for the night side. Furthermore, as was 
pointed out in subsection 3.2b, stability is achieved if a fractional amount of cold 
electrons are intermixed. We thus conclude that, the ring-current particles are 
very likely to be stable against the gravitational (interchange) instability. 

Swift [1967a], taking the resul• of Chang et al., has pointed out that the 
interchange instability of the ring current may be responsible for auroral breakup. 
Although the energy gradient tends to become larger during the compressed 
state of the ring current, because of the arguments presented above, it is still 
ra,ther unlikely that the instability can take place. In addition, the position of 
the ring current during storm time is compressed too far inward for i5 to be 
projected down to. the auroral latitude. 

Application of the drift-wave instability (subsection 3.2a) to the ring- 
current plasma has been considered by D'Angelo [1969]. However, as was men- 
tioned in subsection 3.2a, because of the ion Landau damping in the high /S 
plasma, as well as the cold electron short-circuiting, the instability is rather 
unlikely, excep5 possibly at the plasmapause [Has, egawa, 1971b]. Chamberlain 
[1963] and Liu [1970] have considered the drift wave instability including the 
effect of gradient and curvature drifts. Usually, however, these instabilities have 
very small growth rates and may not be of much importance. Liu considered an 
electrostatic mode, whereas Chamberlain considered a noncompressional electro- 
magnetic mode. However, as was shown by Mikhailovskii and Fridman [1967], 
the compressional electromagnetic mode may produce an important contribution 
to the instability of a high/• plasma with a larger gradient in temperature than 
in density. 

We again conclude that the ring-current plasma is stable against most of 
the driftmode instabilities, except possibly that of the compressional (mag- 
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nerosonic) mode because this is the only mode that is excited in a high B plasma 
and that is not affected by cold electrons. 

•.lb. Velocity space instabilities. In section 4.1, it was concluded that the 
ring-current plasma. is very likely stable against coordinate-space instabilities. 
Hence the loss of those particles has to be produced by some other mechanism. 
We consider here the possibility of velocity-space instability. Whereas the coordi- 
nate-space instability, if it occurs, tends to directly smooth ou• •he plasma non- 
uniformity, the velocity-space instability causes diffusion only in velocity space. 
However, it produces a pitch-angle scattering, and thus can also serve indirecSly 
as a loss mechanism for the plasma. 

Tha• the electrons in the radiation belt may be subjec• to the cyclotron- 
wave instability because of their anisotropic pitch-angle distribution (subsection 
3.1c) was first pointed ou• by Brice [1963]. The idea has been developed by 
Ke•el and Petschek [1966] •o calculate •he limit of stably •rapped particle 
fluxes with respec• to •he cyclotron instabilities. Kennel and Petschek have solved 
•he velocity-space diffusion equation •o obtain the anisotropy of the pitch-angle 
distribution, by assuming the noise amplitude of a whistler wave. The aniso•ropy 
of the pitch-angle distribution gives the growth ra•e of the whistler wave carried 
by cold electrons (subsection 3.1c). By assuming a suitable wave reflection a• •he 
ionosphere, •hey calculaSed 5he amplitude of •he whistler wave using •he growth 
ra•e obtained. Thus by matching the calculated amplitude with the originally 
assumed whistler amplitude, they could solve the chain of quasi-linear equations 
and obtain the stably trapped limit of electron flux (cf. Figure 12). 

The relations needed •o calculate the energy of •hc resonant particles have 
been obtained in their paper. The resonant condition for the cyclotron wave is 
given by 

• - • = kv• (4.2) 

which applies for both electrons and protons by choosing the respective cycloSron 
frequencies •. The energy of the resonan• particles E• =mv,•./2 may then be 
expressed, using •he dispersion relation of cold-electron- and proton-cyclotron 
waves (equations 3.48 and 3.49) with f = 8(v), as 

Ea• =Es • 1 - 
(4.3) 

where E•[= B.oa/(2•oao•)] is the magnetic field energy per particle of cold 
plasma tha• carries •he wave. Furthermore, the ra•io •/o,• can be expressed in 
•erms of the anisotropy of the temperature of the resonating ho, t componen• 
(radiation-belt particles) from equation 3.59a 

1 w _ T, (3.59b) 
If we substitute equation 3.59b into equation 4.3, we can express the energy of 
the resonating (hot) plasma in terms of the anisotropy of temperature as 
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Fig. 12. Limitation on •rapped electrons •40 key as calculated by whistler- 
wave turbulence (after Kennel and Petschek [19'66]). 
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E•e = E• 1 -- ••'•. (4.4) 

_ (4.5) 
Now E•, in units of ev, can be expressed in •erms of •he magnetic-flux den- 

si•y Bo in y and •he cold electron density no• in cm -a 

= 0.4no,(cm_) (4.6) 
Thus, say, for Bo • 200 y, n.oc = 1 cm -a, E• is ]00 key. Therefore, for •his example, 
if •he aniso•ropy, Ti•/T•, is 0.8, 500-key electrons and 2500-key pro•ons resonate 
wi•h •he wave, lose energy, and precipitate •hrough •he pitch-angie diffusion. 

However, one can see from expression 4.6 •ha• •he energy of resonan• ho• 
particles can be significantly reduced if no• is increased, say, by a factor of 10". 
This occurs inside the plasmapause, leading •o •he expectation tha6 an anomalous 
loss of particles inside •he plasmapause may occur. Cornwall et al. [1970] calcu- 
lated such an effec• and showed a good agreemen• with observation. N. Brice 
(unpublished da•a, 1971) proposed an interesting experimen• of producing an 
a•ificia] enhancemen6 of energetic-particle precipitation through injection of cold 
plasma, based on •he dependence shown in equation 4.6. 

Recently a good correlation between the wh]sfier noise ]eve] and •he particle- 
precipitation ra•e has been observed by A. L. Vampo]a, H. C. Koons, and D. A. 
McPherson (unpublished da•a, ]971) and Oliven and Gur, ett [1968], which gives 
evidence for a, loss mechanism due •o •he cyclotron instability. 

Haerendel [1971] ex•ended •he calculation of Kennel and Pe•schek •o obtain 
•he limiting flux of pro•ons. Thorne [1968] considered an obliquely propagating 
whistler wave in which the Landau pole (• = kiiv•i resonance) contribution 
becomes important. As was discussed for •he electrostatic case (subsection 3.1a), 
Ofo/OV mus• be positive at •he Landau resonant velocity vl• = o,./k• in order •o 
have Re • • 0, ra•her •han •he aniso•ropy needed for •he cyc]o•ron-resonan• 
velocity. Thorne has shown tha• an undueted whistler propagating obliquely •o 
•he magnetic field may be amplified by •he secondary peak (Ofo./Ov • 0) in •he 
energy distribution around 10 key. Bird and Schmidt [1969] have considered •he 
effec• of loss-cone distribution and •wo-humped energy distribution on whistler- 
wave instabilities, bu• they concluded •ha• these effects are no• significant. 

We conclude •his section by saying •ha• •he cyclotron-wave instability serves 
as an important loss mechanism for radia•ion-bel• particles. However, because 
a large aniso•ropy is required, •his mechanism is less effective for ring-curren• 
particles, excep• possibly inside •he plasmapause. 

In addition, sca•ering due •o an electrostatic instability ayising from 
anisotropic temperatures (subsection 3.lb), which has not yet been considered, 
may be impor•an• as loss mechanism for •he ring curren• pa•icles. (At •he s•age 
of galley proof •he author was info•ed of a work by Young et a,1. [1971] .) 

•.2. Instability in the Auroral Region 

•ere we discuss instabilities •ha• are characteristic of auroras within •he 
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auroral region. A general review of the role of plasma instabilities in auroral 
dynamics has been presented in a recent paper [Hasegawa, 1971a]. Basically 
two different physical contributions of plasma instabilities have been considered, 
that which leads to the direct cause of auroral breakup and that which appears 
in consequence of the highly nonequilibrium situation caused by the breakup. 
Let us start with the former group. 

Explanations of the auroral breakup using plasma instabilities have been 
made by many authors. Coppd et al. [1966] considered the tearing-mode insta- 
bility of the neutral sheet (subsection 3.2d). They pointed out that the accelera- 
tion of plasma-sheet electrons due to the instability leads to energetic-electron 
precipitation to produce the auroral breakup. We will discuss this instability in 
section 4.4. 

Chamberlain [1963], Su, i•t [1967b], and D'Angelo [1969] have considered 
drift-wave instabilities of various kinds in •he ring-curren• particles as a direc• 
cause of •he auroral breakup. However, as was discussed in section 4.1, •here 
are several severe difficulties in satisfying •he instability condition. In addition 
to these, Corn.wall [1970] pointed out •ha• a high-frequency velocity-space 
instability •hat can very easily be generated in •he auroral region produces a 
large velocity-space diffusion, which s•abilizes a low-frequency instability such 
as the drift mode. 

Observations of a large field-aligned current during subs•orms [Cloutier 
et at., 1970; Cummings and Dessler, 1967; Zmuda et al., 1966.] have led to a 
speculation of current-generated instabilities. Hasegawa [1970b] has applied •he 
helical instability (subsection 3.2d) •o •he auroral sheet-curren• of aurora •o 
show •ha• •he curtain shape of •he aurora may be •he consequence of •his insta- 
bility. Swift [1965] has suspected occurrence of •he electron-ion two-s•ream 
instability (subsection 3.1a), which leads •o an anomalous resistivity [Buneman, 
1958] and •he production of a large electric field parallel to •he magnetic field. 
Such an electric field is claimed •o cause acceleration of electrons •o •cns of key, 
which could serve as a direc• cause of auroral breakup. 

However, the Swift theory has two difficulties. One is that the electric field 
thus produced is directed in such a direction that the cold electrons that carried 
the original current are accelerated. Because the cold electron reservoir is in the 
ionosphere, the accelerated electrons should be directed upward along the field 
lines, which is opposite to what is observed during auroral breakup. Another 
difficulty is satisfying the instability condition. Because in the ionosphere T• ~ 
Te, the threshold velocity of electrons for the electron-ion two-stream instability 
is the electron thermal speed v•e (subsection 3.1a), rather than the. ion sound 
speed cs[= v•(mffm•)•/'a]. Thus it requires a rather large current. In fact 
Ossakow [1968] has shown that the condition of instability is marginal at. the 
upper ionosphere. In view of this fact, Kindel aad Kennel [1971] looked at the 
electrostatic ion-cyclotron instability produced by streaming electrons, and 
showed a lower threshold. (Such an instability can be obtained by using the 
dispersion relation for the electrostatic mode propagating obliquely to the mag- 
netic field (equation 3.27) and by assuming suitable distribution functions for 
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electrons and protons.) However, there still remains the difficulty, mentioned 
above, of the direction of the electric field. 

We conclude that attempts at an explanation of auroral breakup using plasma 
instabilities have not yet been successful. 

Now the fact that energetic-particle precipitation exists during the auroral 
breakup leads us to suspect that instabilities may be produced by those particles. 
Nishida [1964] considered the excitation of the shear Alfv•n mode by precipitat- 
ing electrons (subsection 3.1c) to explain micropulsations associated with auroral 
breakup. Cornwall [1965] considered similar excitation by precipitating protons 
to explain emissions in the ULF to VLF frequency ranges. Coron•iti and Kennel 
1970b] considered the drift wave mode (subsection 3.2a) excited by the large 
temperature gradient at the inner edge of the plasma sheet, to explain micro- 
pulsations in auroras having periods of 5-15 seconds. 

Perkins [1968] has considered an electrostatic instability propagating ob- 
liquely to the magnetic field, produced by a monoenergetic electron distribution in 
a cold plasma background. He claims that stochastic acceleration by this mode 
can easily produce 10-key electrons. 

Quite uniquely, Hallenan and Davis [1971] have attributed curls of approxi- 
mately 10-kin size, produced in the aurora sheet, to the Kelvin-Itelmholtz insta- 
bility as discussed in subsection 3.2c, and concluded from the direction of the 
curl formation that the sheet is electron-rich (cf. Figure 13). 

That the auroral striation could be a consequence on the E x B instability 
(subsection 3.1e) has been suspected by Linson in the context of a paper on plasma- 
cloud instability [Linson and Workman, 1970]. We conclude that phenomena that 
accompany the aurora may have relevant explanations in terms of plasma insta- 
bilities. 

4.3. Instability of Magn,etospher•c Tail 

As was shown in subsection 3.2d, an infinitely extended sheet-current pinch 
becomes unstable for a long wavelength perturbation (X >> a, where a is the thick' 
ness of the current sheet) when, and only when, a finite resistivity exists in the 
current. The instability is called the tearing-mode instability, and •he sheet cur- 
rent is torn into a number of segments by the magnetic field, as shown in Figure 
14. When one applies the instability to the neutral sheerr in •he magnetospheric 
tail, the immediate difficulty is the finite resistivity needed for the instability. 
Hoh [1966a] has shown that electron Landau damping can contribute to the 
resistivity, and that the instability can occur in the. absence of collisional resis- 
tivity. Coppi et al. [1966], using the same idea, have explicitly calculated the 
growth time (time needed to exponentiate the perturbation) for the parameters 
in the actual magnetospheric tail and have shown that it is of the order of 10 
seconds. 

However, two difficulties in this idea have been pointed out by Laval and 
Pellat [1968] and by Hoh and Bets [1966]. According to Laval and Pellat, the 
instabiliW is stabilized when the anisotropy in temperature is taken into account. 
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Fig. 13. Observation of Kelvin-ttelmholtz instability in an a,uroral sheet (after Hallinan and 
Davis [ 1971] ). 
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Fig. 14. Tearing-mode instability of the neutral sheet 
in the magnetospheric tail. 

That is, the collisionless tearing mode is stable when 

T• p• (4.7) 1--•• a 
where pe is the electron cyclotron radius. Because pe/a (• 1, equation 4.7 implies 
tha5 the mode is stable essentially when Tñ • TiI. Hob and Bets have calculated 
the number of electrons that contribute •o the resonant interaction through 
Landau damping and, by considering the resultant source of free energy, they 
have obtained the maximum amplitude of the field perturbations. For a reason- 
able choice of parameters, they have shown that the maximum amplitude of the 
magnetic-field perturbation produced by the instability is of the order of or 
smaller than 0.5 7, which is much smaller than the average tail field (~15 

In view of these arguments, the use of the collisionless tearing-mode insta- 
bility for gross tail dynamics, or to cause magnetic substorms, seems rather dif- 
ficult. However, as was mentioned by Brice [1970], if the current in the neutral 
sheet becomes so large that a •wo-stream-type velocity space instability occurs, 
it will provide a large enough anomalous resistivity to dissipate field energy very 
easily. Such an instability may very well trigger the tearing-mode instability. 
This seems to be an extremely interesting proposal, especially because it may be 
able to explain the explosive phase of the auroral substorm. 

4.4. Instability in the Ionosphere 

In a partially ionized plasma, because of the difference in w,r, where r is the 
mean-free time, Eo x Bo drift can produce a two-stream situation between electrons 
(w,,r, >> 1) and ions (w,•r, •< 1) (subsection 3.1e). Buneman [1963] has shown that 
an instability produced by two such streams can excite a field aligned sound wave 
propagating in the Eo x Bo direction in the ionosphere. His idea has been extended 
by Farley [1963] using the Vlasov equation to obtain the critical drift velocity, when 
temperature effects are not negligible. He has shown that the threshold drift 
velocity of the electrons is •v• • 0.1v•,, if T• --• T,. It is interesting to see that 
the threshold can become lower than that of the ion sound-wave instability prop- 
agating parallel to the magnetic field. This is primarily because ion Landau damping 
is absent for wave propagation normal to the magnetic field. 

As was mentioned in subsection 3.1e, if one combines the effects of a density 
gradient Vno and adc electric field Eo, the instability condition can be more easily 
satisfied if Eo' Vno > 0. This is particularly important when electrons are not 
collision-free and their drift velocity is smaller than the thermal velocity. Tsuda 
and Sato (See Tsuda et al. [1969] for previous references) have applied this idea 
to explain equatorial E-layer irregularities. Reid [1969] has extended works by Tsuda 
and Sato, including the altitude-variation of the neutral atmosphere as well as of 
ionization, and has applied them to the F-region irregularities. 
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Cunnold [1969] has shown that by considering only the effect of the density 
gradient (drift-wave instability) the F-layer irregularity can be explained. 

The existence of adc electric field, as well as a density gradient in electrons, 
is a well-known fact. Other parameters such as number density, collision fre- 
quency, and magnetic-field intensity, are also well-known. Thus if instability 
condition using these parameters is satisfied, it is undeniable evidence. We con- 
clude that the production of ionospheric irregularities is very likely the conse- 
quence of those instabilities. 

5. GENERATION OF WAVES AND PULSATIONS 

We discuss here various mechanisms of wave generation by plasma insta- 
bilities. We divide the chapter into four sections: instabilities of electron-cyclo- 
tron waves, proton-cyclotron waves, other instabilities proposed for excitation of 
pulsations, and wave generation in the magnetosphere. The first three apply to 
pulsations and VLF emissions primarily observable on the ground, whereas the 
last applies to waves in the magnetosphere observable only by satellites. 

5.1. Excitation o/Electron-Cyclotron Waves (Whistlers) 

That a whistler wave may be generated by a beam of particles was first 
pointed out in a paper by Kimura. [1961], in which he showed that the whistler 
wave could be amplified by a proton beam (subsection 3.1c). The idea of wave 
generation by a beam has since become so popular that there has been a tendency 
to attribute any wave observation to some kind of beam with a convenient energy. 

As was shown in subsection 3.1c, in an infinite medium the two-stream cyclo- 
tron-wave instability occurs between different species. Namely, the electron- 
cyclotron wave can be excited only by the proton beam or vice versa. Bell and 
Buneman [1964] have shown, however, that when the beam is gyrating, inter- 
action between •he same species may be possible; they gave as an example 
whistler-wave amplification using a gyrating-electron beam. 

The idea presented by Weibel [1959], which predicts an unstable electro- 
magnetic mode for anisotropic temperature, as discussed in subsection 3.1c, has 
been picked up by Kennel [1966] to be applied as an additional cause of whistler 
amplification. He also pointed out the importance of the Landau pole (• = kllv,) 
to the obliquely propagating whistlers and extended this idea to show the stabili- 
zation of unducted whistlers due to the Landau damping by low-energy to thermal 
electrons [Kennel and Thorne, 1967]. 

Very recently Lee aad Crawford [1970] have pointed out thaf• the cyclotron- 
wave instability due to the anisotropic temperature is not always convective 
(spatially amplifying) as was assumed by Kennel and Petschek [1966] in their 
famous paper on calculation of the limiting fluxes. 

Hru•ka [1966] and Liemohn [1968] considered the two-stream cyclotron- 
wave insf•abilif•y including the effect of anisotropic temperature. Das [1967] dis- 
cussed the effect of a loss-cone distribution on whistler-wave amplification. 

In conclusion, whistler waves may be amplified by a proton beam, by a gyrat- 
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ing-electron beam, or by the anisotropic temperature of electrons. When a wave 
propagates obliquely with respect to the magnetic field, it can either be Landau- 
damped or amplified, depending on the energy distribution of electrons in the 
magnetic field direction. 

5.2. Excitation of Proton-Cyclotron and Alfv•n Waves 

As far as the nature of the instability is concerned, the excitation mechanism 
of the proton-cyclotron mode is essentially the same as that of the electron- 
cyclotron wave. The existence of an electron beam, a gyrating-proton beam, or 
an anisotropic proton temperature, can cause the instability. 

Observationally, however, the. corresponding frequency lies naturally much 
lower (~1 Hz or lower) than the whistler case. Jacobs and Higuchi [1969] solved 
the dispersion relation of the plasma-to-hot-proton-beam interaction to obtain a 
growing-wave solution in the :Pc I range. Criswell [1969] discussed the morphol- 
ogy of :Pc I pulsations based on a similar instability. There are many other works 
published on related problems. References can be found in the most recent papers 
on this topic. 

In addition to the interaction around the proton-cyclotron frequency, as was 
shown in Figure 5, there is another frequency range where a beam can generate 
an instability. This instability has such an interesting nature thai the excited 
wave has a frequency proportional to. the unneutralized-charge density. In addi- 
tion, the polarization of the wave depends on the sign of the excess charge; a left- 
(right-) hand polarized wave is excited by an electron- (proton-) rich beam. 

These instabilities have been applied by Nishida [1964] to explain irregular 
magnetic micropulsations and by Kimura and Matsumoto [1968] to explain :Pc 5 
micropulsations. 

5.3. Other Theories of Instability-Generated Pulsations 

Although most of the theories of instability-generated pulsations are based 
on excitations of a proton-cyclotron wave or an Alfv•n wave by a beam or by 
anisotropic temperature, there are some other examples. Swift published two 
papers of this nature. One explains the long-period micropulsations (~l-rain 
period) by an electrostatic drift wave instability [Swift, 1967b], such as the one 
discussed in subsection 3.2a. As explained in this text, the electrostatic drift insta- 
bility is rather unlikely to occur in the magnetosphere because of the ion Landau 
damping in a high /• situation, and because of cold-electron short-circuiting. 
Besides, the theory as it stands is developed purely for electrostatic perturbations; 
hence a coupling scheme to the electromagnetic mode must be worked out to com- 
pare it with the observations of pulsations in the geomagnetic field. 

The second paper applies the loss-cone instability found by Post and Ros,en- 
bluth [1966], to explain VLF chorus [Swift, 1968]. When there is a loss-cone 
distribution (a distribution in which particles with pitch angles less than the loss- 
cone angle are absent), the dielectric constant becomes active (Im e < 0) for 
waves propagating almost perpendicular to the magnetic field. Instability occurs 
when this ion mode couples with the cold-electron dielectric constant, and waves 
of the ion Bernstein mode, at multiples of the proton-cyclotron frequency, are 
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excited. The wave is stabilized, however, when the electron temperature is high 
because of Landau damping. 

Swift assumed a rather large loss-cone angle (45 ø) to show the possibility of 
the instability. Since the excited wave is again electrostatic, a more careful study, 
including realistic loss-cone distributions and coupling to the electromagnetic 
mode, has to. be made. 

Coroniti and Kenael [1970a] consider modulations of the energetic-electron 
precipitation by low-frequency micropulsations. Using an idealized model of 
critical whistler-wave turbulence, they have shown that the precipitation modula- 
tion depends exponentially on micropulsation amplitude, when the micropulsation 
period is less than the electron-precipitation lifetime. This is primarily because 
the growth rate of the whistler-wave instability due to anisotropic temperature is 
proportional to Bo, as shown in equation 3.58. Hence if Bo changes slowly with 
time, so does the growth rate 7, and the precipitation that has exponential depend- 
ency on 7(-•e vt) is strongly modulated by a small change in 

5.•. Wave Generation in the Magnetosphere 

Recent satellite measurements have made it possible to detect directly wave 
phenomena in the deep magnetosphere [Brown et al., 1968; Dunckel and Helli- 
well, 1969; Gurnett et al., 1969; Russell and Holzer, 1970; Scar• etak, 1968, 1970; 
Cummings et al., 1970]. 

These observations have revealed that, in addition to expected whistler- 
related phenomena, there are low-frequency waves (period of a few minutes 
[Russell and Holzer, 1970]), high-frequency waves (a few kItz [Scar• et al., 
1970]), and even electrostatic waves (a few kHz [Kennel, 1970]), which are con- 
fined around equatorial regions in the magnetosphere. 

Dungey and Southwood [1970] have tried to explain the low-frequency 
waves by bouncing protons in the geomagnetic-mirror field. Kennel et al. [1970] 
tried to explain the electrostatic mode in terms of the known electrostatic insta- 
bility due to anisotropic temperature (subsection 3.1b). These wave phenomena 
are quite intriguing, and many problems are yet unsolved. Careful theoretical 
study should produce many fruitful results. 

There is one rather clear example in which a plasma instability has caused 
a wave phemonenon in both magnetic field and particle fluxes. This is the case 
reported by Brown et al. [1968] and interpreted by the author [Hasegawa, 1969a]. 
The observed oscillation is .reproduced in Figure 15. 

The observation was made by Explorer 26, which was located at 5.11 Rr 
geocentric distance, 1400 LT, and latitude of 17 ø. From this figure can be seen (a) 
a strong diamagnetic effect (indicating/• ~ 1) starting at 6:15 and suddenly ter- 
minating a5 6'20, shown by point A; (b) a large anisotropy of the proton fluxes 
(•ñ > fi,); and (c) the start of large out-of-phase oscillations of the field and 
the fluxes shortly after the point A. 

The first two facts strongly indicate the occurrence of a mirror instability 
(subsection 3.1d). When such an instability is set up, it can terminate a further 
increase in anisotropy of the proton flux and trigger the succeeding oscillations. 
In fact, by studying the proton data provided by L. Davis of GSFC, it was found 
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that near point A in Figure 15, fiñ/fill ~ 2 and fiñ ~ 1, which satisfies the condi- 
t. ion of instability shown in equation 3.72. 

Because the mode causing the mirror instability is nonoscillatory (equation 
3.70), other effects are required to explain the oscillations clearly observed 
after 6:30'. It is suggested that the oscillation is produced by coupling with the 
drift wave created by the ion drift perpendicular to the magnetic field. This will 
give rise to a real frequency • ~ kñva, where va is the proton diamagnetic drift- 
speed, and the perpendicular wave number kñ may be chosen to be •c.v/(vñ)•, cor- 
responding to its value for the maximum growth rate. Observed values of average 
proton energy (~20 kev) and the magnetic-field strength (~200 7) give a fre- 
quency that is in good agreement with the observed frequency. 

6. CONCLUDING REMARKS 

Various theories of plasma instabilities and their applications to magneto- 
spheric dynamics have been presented. Possible instabilities that have been pro- 
posed in the literature are summarized in Figure 16. Not all of these are realistic, 
as has been discussed in chapters 4 and 5. We did not discuss the stability of the 
magnetospheric boundaries, primarily because of the lack o.f equilibrium there 
[Lerche, 1967;Parker, 1967a, b; 1968a, b], but this is by no means a less impor- 
tank area. One possible solution for this problem, suggested by Avfatar and Wolf 
[1968] is to. use the idea of '5urbulen5 equilibrium' exci5ed by a two-stream 
instabiliby. In any case, a direcb application of the Kelvin-Helmholtz instability 
without taking these points into account seems meaningless. 
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Fig. 16. Plasma instabilities that have been predicted in various portions of the magneto- 
sphere. 

As far as plasma instability is concerned, several important problems remain 
that should be worked out in the immediate future. They are (1) the drift-wave 
instability in a high/• situation, especially that of compressional mode; (2) the 
electrostatic instabilities and their consequence to particle scattering; (3) a more 
careful treatment of the tearing mode instability, including the possible anomalous 
resistivity produced by the neutral-sheet current; (4) modification of drift modes, 
including the bounce-resonance effects of particles; (5) a realistic treatment of 
magnetospheric boundaries; and (6) several hidden instabilities during magneto- 
spheric substorms. 

In addition to direct dynamic changes in the magnetosphere caused by 
coordinate-space instabilities, wave generation by velocity-space instabilities pro- 
duces various important consequences to magnetospheric particles, such as diffu- 
sion [Birmingham et al., 19.67; Fiilthammer, 1970; Lanzerotti et al., 1970; Nakada 
and Mead, 1965; Newkirk and Walt, 1968], hea•ing and acceleration [Barnes, 
1967; Hasegawa, 1969b; and Laval and Pellat, 1970], and particle scattering 
[Cornwall, 1964; Dungey, 1964; Roberts, 1966; Aviatar, 1967; Roberts and 
Schulz, 1968,]. 



PLASMA INSTABILITIES 767 

This paper can be concluded by saying, without exaggeration, that plasma 
instabilities control the dynamics of the magnetosphere. 

APPENDIX A. LIST OF NOTATIONS 

n = number density. 
Vo = stream velocity. 
v• (= •o/k) = phase velocity. :' 
vr (= ((v2))•/2 = thermal velocity. 
( ) = unstable average. 
Subscript i = ion (proton). 
Subscript e = electron. 
Subscript s = stream. 
Subscript 0 = unperturbed (dc) quantities. 
Subscript 1 = perturbed (ac) quantities. 
Subscript _L = perpendicular to the magnetic field. 
Subscript I I = parallel to the magnetic field. 
E = electric field intensity. 
B = magnetic flux density. 
m = mass of a particle. 
J = current density. 
• (= (q2no/eom) •/•) = plasma frequency. 
•c (-- qBo/m) = cyclotron frequency. 
eo = vacuum dielectric constant = 8.854 X 10 -• Farad/meter. 
W = energy density of a wave. 
a = equivalent plasma conductivity. 
e = equivalent plasma dielectric constant. 
v• (= Ow/Ok) = group velocity. 
v = electrostatic potential. 
Im • = imaginary part of •. 
Re • = real part of •. 
• (=nkT/(B•/2•o)) = ratio of plasma pressure to the magnetic field pressure. 
• = distribution function. 

c, (= v•,•(m•/m,) •/•) = ion sound speed. 
v• [= (v• • -]- v•2) •/•] = perpendicular velocity in cylindrical coordinate system 

with z ll B. 
v, [= v,] = parallel velocity in cylindrical coordinate with z [[ B. 
P = principal value of integral. 
c = speed of light in vacuum = 2.99... X 10 s m/sec. 
v•(= •c•c/o•) = Alfv•n speed. 
Z = plasma dispersion function, equation 3.29. 
•o = vacuum permeability = 1.26 X 10 -• Henry/meter. 
• (= m(v•.•)/2Bo) = magnetic moment. 

= collision frequency. 
t• (= e/vm) = mobility. 
D = diffusion constant. 

v• (= gv•,•'/o•,) = diamagnetic drift velocity. 
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v• (= _gV(Bo)xBo) = gradien• •B•drift velocity. /•0 

K = - dx = measure of density gradient. 

v,• ( m(v"2)R x Bø) = -- qR•Bo • • curvature drift velocity where R • radius of curvature 
defined by 

p (= vr•/•) = cyclotron radius. 
• = resistivity. 
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