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Abstract-The development of the Kelvin-Helmholtz instability (KHI) in a compressible plasma containing 
a magnetic field is studied for a finite thick layer with a velocity shear in a linear two-dimensional MHD 
approximation. Approximate analytical expressions for the phase speed, growth rate and wavenumber of 
the fastest growing unstable mode are derived for the velocity profile across the layer with the velocity 
shear having a sudden onset, termed a sharp elbow. The Dispersion equation is obtained from boundary 
conditions on i:he sharp elbow where the logarithmic derivative of the total pressure (or normal component 
of velocity) plays the main role. 

The KHI, driven by velocity shear, is considered as a possible generator of plasma oscillations in 
magnetospheric regions such as at the boundary between the inner plasma sheet and the plasmasphere, the 
boundary between the plasma sheet and the tail lobes and the boundary between the plasma sheet and the 
magnetopause. Analytical expressions for the phase speed, growth rate, period and wavenumber of the 
growing unstable mode obtained with some simplifying assumptions leads to values similar to the results 
of numerical analyses. 

1. lINTRODU(JTION 

Periodic aurora1 forms are often observed at the bor- 
ders of the aurora1 oval as wave-like structures with a 
certain periodicity and drifting along the border. The 
wave-like structures are detected in the evening sector 
at the oval’s equatorward border, where large-ampli- 
tude undulations of the diffuse aurora boundary are 
seen (Lui et al., 1982). The omega bands are typically 
observed in the morning sector of the poleward oval 
during aurora1 subsi.orms. Discrete aurora1 arcs with 
a fan-shaped configuration occur in the cleft region 
(Lundin and Evans, 1985; Meng and Lundin, 1986). 
Using UV aurora1 images from Viking spacecraft, Lui 
et al. (1989) found !spatially periodic bright spots in 
the afternoon sector which they described as ‘beads 
on a string’. 

Lui et al. (1982) first suggested the Kelvin- 
Helmholtz instability as the possible mechanism of 
development of wave-like processes at the inner edge 
of the plasma sheet in the evening sector where the 
sunward convecting plasma encounters the corotating 
plasmasphere. The KHI, driven by velocity shear, is 
usually regarded as a possible mechanism to generate 
a surface wave in the plasma sheet boundary layer 
(Lyons and Fennel, 1986; Lui et al., 1987; Bythrow et 
al., 1986; Bythrow ei’al., 1987; Troshichev, 1991). The 
KHI is examined in the low-latitude boundary layer 

as one of alternatives to explain periodic variations in 
the magnetic field, energetic particle fluxes, and aur- 
oral forms on the dayside of the magnetosphere 
(Bythrow et al., 1986; Lui et al., 1989; Potemra et al., 
1992). 

While reference to the KHI is in common use in 
treatments of wave-like aurora1 forms, a detailed con- 
sideration of the instability mechanism has not yet 
been performed. There are a number of theoretical 
studies (Miura and Pritchett, 1982; Pritchett and 
Coroniti, 1984; Thompson, 1983), as well as numerical 
calculations (Wu, 1986; Wei et al., 1990; Mesensev, 
1991; Morozov and Mishin, 1981; Miura, 1987Miura, 
1982; Yamamoto et al., 1991Yamamoto et al., 1993), 
of the K-H instability, but analytical expressions for 
the phase speed, growth rate, and wavenumber of 
the fastest growing unstable mode for the case of an 
arbitrary velocity profile have not yet been obtained. 
Here we consider such a possibility a velocity shear 
profile with a sudden onset, termed a sharp elbow in 
the velocity profile. Other plasma parameters such as 
the magnetic field, sound speed and density can also 
be changed at this point. 

The boundary conditions at the sharp elbow lead 
to the dispersion equation allowing us to define the 
period, the phase speed, and the growth rate of the 
oscillations. Derivation of the analytical expressions 
for these values is the aim of this study. 
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2. ANALYTICAL DEPENDENCE ON THE ARBITRARY The velocity component V, can be derived from (3) 
VELOCITY PROFILE and (7): 

The flow of compressible plasma in a magnetic field 
is examined using the linear two-dimensional MHD 
approximation. The wave is supposed to be plane, 
with the wave vector k lying in the plane of the flow, 
the x axis is directed along the wave vector, and the z 
axis is directed across the flow in the direction of 
the flow velocity increase. a/ay = 0 for all quantities. 
d/ax = 0 for the background quantities. The flow vel- 
ocity is U = (U,, U,., 0), the plasma density and mag- 
netic field are constant (p = const, H = const), the 
sum of the gas and magnetic pressures is p = const, 
H, = 0. All perturbed values are written in the form: 

A - A(z)exp(i(kx-wt+rp(z))) 

Three components of the flow equation are used: 

-iwpVX+ikpUXVX+pU~Vz = -ikp+ gH,h,, (1) 

-iwpVy+pU~Vz+ikpUXVy = $H,h,, (2) 

-iwpV,+ikpU,V, = -p’+ $H,h,. (3) 

v, = ipQ 

kp(V;,-Q’) 

and & from (2): 

v = 4np U; V, - ikh,H, 
Y 4zikpR (10) 

The density p is expressed from (8) h, and h,, are 
substituted there from (6) and (7). Inserting (8), (5) 
and (6) into (4), we obtain: 

where 

fan_& 
ax 

Let us substitute I’, in the x-component of the flow 
equation. 

kp,[; - ; (p/p- $(;l)if] 

lfz ’ The continuity equation: +pV,U: = -ikp+pvf, n 
0 

(12) 

-iwp+ikpU,+ikpV,+pV;. = 0 (4) In this equation V, is substituted from (9). 
and Maxwell’s equations from which the components 
of the magnetic field are expressed as: 

(5) By using (9) equation (13) resolves solely into V, 
variables or solely into p variables. 

h 
Y 

= iHy( K/k + iVJt2 

I&Q’ ’ 

h,= -!$ 

where 

(6) 

(7) 

p is the density, C, is the sound speed, His the mag- 
netic field, p is the density perturbation amplitude, 
V is the velocity perturbation amplitude, U is the 
undisturbed velocity, V, is the Alfven speed, and h is 
the magnetic field perturbation amplitude. A prime 
denotes the derivative with respect to z. 

(14) 

I , 

(0 1 
;G+R z, 

W’:x-Q2) v = o 
(15) 

where 

G=522f_V2 
f- 1 ax. 

In the simplest case of an incompressible medium 
without a magnetic field, equation (15) is simplified to 
Rayleigh’s equation: 

V;+ V&‘/Q-k2Vz = 0. (16) 

Equation (14) is an analogue of the equation 
obtained by Miura and Pritchett (1982). 

The analytical solution of these equations for an 
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arbitrary velocity profile does not seem to be possible, 
but a general idea about the nature of the disturbance 
can be obtained considering the imaginary part of 
the logarithmic derivative of the total pressure or the 
transverse speed. This quantity is equal to a derivative 
of the oscillation phase for p (or VJ with respect to z. 
Therefore, this imaginary part characterizes an eddy 
of the flow. It appears that this imaginary part at an 
arbitrary point z, can be expressed through par- 
ameters of the oscillation and background plasma 
parameters at the point z, and at some resonant points 
where equations (14H 16) have singularities. Such 
expressions are helpful for understanding the physics 
of these phenomena. 

In order to find 3m(p’/p) we introduce a new vari- 
able w: 

p =: w( V&-@)‘/2. (17) 

then equation (14) loses the first derivative term. 

w”+w 

i 

k2(l~,2v~x-C;!22+~4) 

Cf Ux--F-.Vk,-id 
( >( 

Ux-F+V,,-i8 
) 

3fi2( Vi)’ _ = 

( 
V,, - F + U, - i6 

2 

>( 

2 

)I 

0, 

V,,+F--ci,+iS 

(18) 

where Cj = C? + Vz is the square of the fast mag- 
netosonic speed along the magnetic field, and V,, = 
C, V,,/C, The small quantity ia is introduced here for 
contour integral evaluation are singularity points in 
conformity with Landau’s rule: (when t + -co the 
amplitude of oscillation must tend to zero). 

Assume that 9 is a solution of the Lagrange con- 
jugate equation which differs from (18) only by the 
sign of 3. Let us multiply equation (18) by 9, the 
conjugate equation multiply by w, and then subtract 
one from the other. 

s 
“(w’W”w)dz = (SW’-S’w)l; = -S(z,)w’(z,) 
20 

+ %(z,)w(z,) = - 2ni 2 Res Sjwj(e - &), (19) 
,=n 

where Fis the multiplier of w in (18) Eis the conjugate 
of F, N is the total number of residues, n is the number 

of the residue which is closest to the point z, in the 
direction of increasing z. 

3mp’/p = 3m wfjw + Srn QUi/( V& - Q’). (20) 

Considering (19) for the infinitely distant point, one 
can conclude that the total sum of residues is equal to 
zero in any case. 

nk* V3 
IWb12L 

zk2 V3 

2u:tG “xb=O,kh v,, 

-Iw,I*L 

2u:ac; “x,=o,k+“k, 

_(~-~) l%121uxd=m,k-va, = 0. (21) 

Integrating (15) as well as (14) we obtain nine 
resonant points: U,(z,)- UP, = 0, * Vkx, f V,,, f 
((Cj + C, (C’ - 4Vj&)1/2)/2)‘/2 (UP, is the phase speed). 
All these nine residues will not be written here since 
they are cumbersome and only the simplest case (16) 
will be considered. For an arbitrary point z, we obtain: 

Wz,)l vz(zc)12 
3m vlivz’z~ = - 7r u:(zJ Vz(zc)12 ux(i,)= (&’ (22) 

The matter “lliX,=w,k_ V,,” means that the expression 
“Iwh12(nk2V~,/2U&C/Z)” must be taken in the point 
where U,, = w/k- V,,. 

Considering the infinitely distant point one can see 
that Ul(zJ = 0. This means that the phase speed 
always coincides with the velocity flow at the elbow 
point for incompressible flow without a magnetic field. 
This is stronger than the well known Rayleigh theorem 
which simply declares the necessity of the existence of 
an elbow in the velocity profile for the development 
of oscillations. 

Unfortunately, for an arbitrary velocity profile we 
can do nothing more. However, the obtained formulae 
turn out to be useful when considering an idealized 
profile with a sharp elbow that may exist in the mag- 
netosphere. For example, the magnetic field at the 
magnetopause changes over a distance considerably 
less than the typical scale size over which the plasma 
flow charges. The plasma velocity begins to change 
immediately towards the boundary layer (Sergeev and 
Tsyganenko, 1980). According to this fact a dis- 
continuity of the first derivative of the plasma velocity 
at the magnetopause can be supposed. A similar situ- 
ation exists at the boundary between the plasmasheet 
and the tail lobes (Rajaram et al., 1991). 
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Fig. 1. The velocity profile with a sharp elbow; the direction 
of flow is perpendicular to the z-axis. 

3. VELOCITY PROFILE WITH A SHARP ELBOW 

It is known (Landau and Lifshits, 1988) that oscil- 
lations of the flow are concerned with the second 
derivative of the velocity. This can be seen from the 
eigenmode equation (e.g., Miura and Pritchett, 1982), 
which never has a solution satisfying the necessary 
boundary conditions when Ul = 0. This means that 
areas with the maximum curvature of the profile are 
the main sources of oscillations. Let us examine the 
case when the velocity derivative changes suddenly at 
one point of the profile; the curvatures at other points 
are negligible (Fig. 1). The jump of the first derivative 
of the velocity occurs at this point. The surface wave 
will run along the boundary, i.e. along the surface of 
maximum curvature. 

Usually the wave amplitude increases if the number 
of faster particles is larger than the number of slower 
particles at the resonant points: this depends on the 
sign of the second derivative of the velocity. The wave 
energy will be provided at the cost of flattening the 
profile curvature. Using this method we shall try to 
obtain the analytical dependance and to understand 
better the physics of the Kelvin-Helmholtz instability. 
Such a method of examination was first put forward 
by Phillips (1980) for ocean waves; this was later used 
for an incompressible medium containing a magnetic 
field in applications to problems of astrophysics (Vro- 
be1 and Kontorovich, 1982; Gestrin and Kontorovich, 
1984); it was applied for the magnetosphere by Ptitsina 
and Gudkov, 1991. 

The present study concerns a compressible medium 
with a magnetic field. We consider the case when the 
magnetic field, sound speed and density of medium 
are changed at the plane boundary where the first 
derivative of velocity U:, (quantities on the boundary 
will be denoted by ‘,‘) has the jump. 

Moreover, in order to obtain the dispersion equa- 
tion it is necessary to suppose that the flow velocity 
on one side of the boundary is equal zero. All par- 
ameters on this side will be denoted by ‘Z’, and, in the 
medium with flow velocity, by the index ‘,‘. The flow 
velocity on the boundary is continuous, so U,, = 0. 

A location where the scale of change of magnetic 
field in the the velocity shear layer is considerably 
less than that the flow velocity can be found in the 
magnetosphere. Rajaram et al. (1991) have considered 
the sharp jump of magnetic field on the edge of the 
layer of smoothly varying velocity shear, that is, in 
the low-latitude boundary layer. However, the solu- 
tion has been sought numerically for the velocity pro- 
file in the form of hyperbolic tangents. Similar 
situations can be also realized at the magnetopause 
(Sergeev and Tsyganenko, 1980). Using the condition 
of the absence of the normal plasma flow across the 
boundary (the tangential discontinuity) we obtain: 
VZ10 = V_20. But for the dispersion equation the 
relationship between V& and Vi&, is essential as well. 
For this purpose we shall seek the exact solution for 
V,, using the fact that the plasma velocity is equal to 
zero on this side of the boundary. Instead of (15) the 
simple equation with constant coefficients is obtained: 

Vr2 = Vz20 exp (kz((R2 - V&,)/G)‘i2). (24) 

Therefore, the solution is found only for the case 
when the expression under the square root is positive. 
This means that: 

where 

(Re w/k? E 10, Vkx21 u [x1, x21 

VkXZ = G2V.x2/G2 

is the cusp resonance speed in the direction of x, and 

x,,~ = (C;~(C&4V;,,C2,)“*)/2 

are the speeds of the fast and slow magnetosonic 
waves. Then the condition of total pressure balance: 
p,,, = pzo, where p2,, is expressed from (13), can be 
used. 

G,. 

Now we substitute the solution (24) for (V,,/Q), 
replace Vz2,, with Vrlo, and substitute the expression 
for Vzlo from (9). The dispersion equation for the 
pressure variables is obtained as: 
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k~(V&,-aZ) = - $ ((nz- v2,,,)jG,)"2~,. 0 0 

The dispersion equation for the V, variables can be 
obtained in a similar way. 

PI 
( > 

2 ‘G, (27) 
0 

= p2G;/2k(@- &)112+‘. 

Quantities (p;/p,),, or (V:,/V,,), in the dispersion 
equations remain unknown. 

The general scheme of solution is the following. 
Since we have obtained a dispersion equation of 
fourth order, it is preferable to reduce it to second 
order using assumptions about the relationship 
between the main plasma parameters. These relation- 
ships are different for various areas of the mag- 
netosphere. Expressions for the phase speed and 
growth rate can be obtained more or less easily from 
the second order equation with additional assump- 
tions. Moreover, as a rule, the imaginary part of the 
logarithmic derivative of the pressure (or transverse 
speed) plays the main role in determining the growth 
rate. These derivatives can be expressed in terms of 
parameters of the oscillation and background plasma 
at the resonant points, as well as at the boundary. For 
example: 

N 
Iwj12 3rnt o = ;r,z Reslw,i'*(F'-Q. (28) 

Here the quantities 

Iwj12/lwo12 

are unknown and they can be estimated approxi- 
mately resolving the differential equation (18) with an 
asymptotic consideration of the singularities. In this 
case it is useful to take into account the infinitesimal 
nature of second denvative of the flow velocity in the 
area of integration excluding the elbow. The real part 
(p;/p,), (or (V:,/V, ,),) has been found from the 
approximate solution in the region near the boundary. 

The wavenumber of the fastest growing unstable 
mode usually can be found by differentiating the 
growth rate with respect to k. 

An illustration of the results for examples of the 
simplest velocity profile and the realization of this 
scheme for concrete (conditions in the magnetosphere 
will now be presented. 

4. SOLUTION FOR LINEAR VELOCITY PROFILE 

Let us consider the plane flow of incompressible 
fluid without a magnletic field. The velocity in the layer 

1 

-1' ’ ’ 
-2 0 2 4 z 

Fig. 2. The linearly-varying velocity profile; the direction of 
flow is perpendicular to the z-axis. 

of thickness z is changed linearly from 0 to 2 and is 
constant outside this region (Fig. 2). Such a flow is 
described by equation (16). The surface wave, running 
along each elbow, can be determined from the dis- 
persion equation (27). In this case the dispersion equa- 
tion is written as: 

R = A Vl(k - ( I’;/ I’,),) = CI,ILI(k - ( WV&,). 

(29) 

(Vi/ VJ, is found from Rayleigh equation (16). 

Re (V~/VJ, = k(exp (- 2k) - l)/( 1-t exp (- 2k)) 

(30) 

UP,, = (1 + exp (- 2k))/(2k) (31) 

U,, = 0 for k = 0.64, as it should be for the given 
profile. 

kW Cl Vz), 
’ = 3m(w) = (1/U,h)2+(3m(V~/Vz)2’ (32) 

For the Rayleigh equation we shall consider: 

u;(z) = 6(O) - 6(2), 

where 6(z) is the Dirac delta-function. Integrating the 
Rayleigh equation in the same manner as we did when 
equation (19) was derived, we obtain: 

exp (- 4k)ylk Y/k 

3m( Vi/ VJ, = 
(2 - u,d’ + y21k2 + CSp,, + y2/k2 

l+exp(-4k) 

(33) 

The total solution for the system, including equa- 
tions (32) and (33) is too bulky. Let us study some 
special cases. It may be seen that the growth rate is 
equal to 0 for U,, = 1 (k = 0.64), reaches a maximum 
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close to U,, z 2(k r 0.4) and again goes to 0 fork = 0. 
Let us estimate the maximum growth rate. 

3m(I’t/I’z),lq,=~ E ;exp(-4k), (34) 

y z 0.4iexp(-4x0.4)/(l/2)2 = 0.16. (35) 

The growth rate is maximal when the phase speed of 
the surface wave generated by the first elbow coincides 
with the flow speed in the region of the second elbow. 
The sum of these two oppositely travelling plane 
waves produces a standing wave relative to the centre 
of symmetry. 

Numerical analyses, carried out by Ong and Rod- 
crick (1972) and Miura and Pritchett (1982), show that 
the maximal value of y is equal to 0.18 for k = 0.45. In 
the case of a linear profile, Ong and Roderick, 1972 
obtained y equal to zero for the same wave number 
(k = 0.64). 

5. BOUNDARY BETWEEN PLASMA SHEET AND TAIL 

LOBES 

We assume for this case that the width of the current 
sheet, separating the plasma sheet (medium 1) from 
the magnetospheric tail (medium 2) is much less than 
the width of the layer where the plasma velocity chan- 
ges, this layer being located within the plasma sheet 
close to the current sheet. In this case the magnetic 
field is parallel to the flow. Taking into account the 
observed values of the fast magnetosonic speed 
C,, = 1000 km/s, and Alfven speed I’,, = 900 km/s, 
we obtain the sonic speed C,, = 435 km/s, and the 
speed of cusp resonance V,, = 390 km/s. We assume 
also that the plasma density is different in both media 
(p, = 10 pZ), and C,, = C,,. We shall consider only 
the waves propagating along the plasma flow because 
numerical calculations show a maximum growth rate 
for such waves (Miura and Pritchett, 1982). In our 
case when the Alfven poles are absent (V,, > U,,,,,) 
the following condition is necessary for the devel- 
opment of oscillations: 

Here fi = w/k -U,, U is the plasma flow velocity; 
index ‘0’ is taken for values on the boundary. To 
simplify the dispersion equation 

VZX, >> 0:. 

We shall suppose also that 

sz: >> vh2. 

we can then assume: 

Then the dispersion equation of fourth order (26) 
can be reduced to a quadratic equation in R2 for the 
pressure variables: 

(kV~~,p,/pz)‘(C~~-n*) = (36) 

Solving this equation we obtain expressions for the 
phase speed and growth rate. 

u,, = cs2 (37) 

(38) 

Let us introduce the value 3m(w’/w) where: 

w = p/( V& - cly. (39) 

In this case only two poles of the cusp resonance 
exist. 

- m 2u:,cf, ux,=w,k+ vk,,’ (40) 
The ratio 

may be obtained from (18). At first, we shall find a 
solution in the regions located far from the poles 
k Vkx, by taking into account that V,,, >> U,, C,,. A 
simple equation is obtained. 

w”-k2w = 0. (41) 

To find the asymptotic solution close to the poles 
we expand the denominators in equation (18) into a 
series. 

s2- VkX, = -zu;. (42) 

wn + wQ2/z = 0, o2 = k*(G - VSV:x, - CL, 
. 2 Vkx I u:c:, 
(43) 

After substituting: 

w, = zV(2@z”2) (44) 

the equation (43) is reduced to a first-order Bessel 
equation for positive z and to a modified first-order 
differential Bessel equation for negative z. The Bessel 
functions J, and I, are selected taking into account 
the boundary condition, that the value w would be 
limited at the zero point. The general solution of equa- 
tion (43) is found from a partial solution according to 
the formula: 
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w(z) = w’(z)(c,+c+$). (45) 

s (46) 

Considering J, = -JA, 

CIZ s-;i=I d(ln Z) 

4J0) (Jb)’ (47) 

(I/(TJ,J,);I’ = l/(iJ:) - l/(iJ:). (48) 

Then, in the region 1 g 0, we obtain roughly: 

s 
[(l/(iJoJ1))‘+ l/(#)] dz E l/(.fJ,,J,)+ y, 

0 

(49) 

w(z) = c~z”~J,(~@z”~) + c,/J,(2@z”*) 

+ c,2@z’/2J1(2~Dz”2)ln(2@z”2)/J~(2~z’/2) 

z c,/J,(2@z”*). (50) 

Here we take c1 = 0 for simplicity because, in other 
cases, the solution will represent a funnel with steep 
edges which make no physical sense. In reality, the 
value 2@z”* varies fr’om 0 to 0.01. Within this range 
we obtain negligible changes for J, = l-0.999, and 
for 1, = 1 - 1.001. Therefore, the value w varies neg- 
ligibly in the vicinity of the poles and we can derive 
the approximate solution for the whole region. 

w = w,exp(--kz). (51) 

Substituting this solution into (40), we obtain an 
expression for the growth rate. For large values of 

VU,: 

SYZ(~‘/~)~ = 3m(w’/~)~ + 3mQ,U:,/( Vzx - 0:) 

E %z(w’/w),. (52) 

w ( - 2kz,) exp ( - 2k.+) - u’ 
101 

u, ; 
XB > 

(53) 

Ux,= Uph+Vhl; c;,= Up/if V&l. 
These values we shall substitute into formula (28). 
The growth rate y can be presented as the sum of 

two terms: y = y.+yg, where 

Both terms have a maximum at ki = l/(223. The 
term y. increases the perturbation and it depends on 
the velocity parameters in the faster region. The term 
yg decreases the perturbation and depends on speed 
parameters in the slower region. 

Taking the known values UiU = 0.1 s-‘, U$ = 1 
s-‘, z, = 4000 km, zB = 2000 km, we can calculate 
the maximum values ya (for k = l/(22,)) and yg (for 
k = l/(22,)). The maximum yg turns out to be ten 
times greater than the maximum yg, i.e., the velocity 
profile at point z, is less steep than at the point zg. 
Other estimated values are the following: ymax E yrnax 
(z,) z 0.14 s-l, Up, = 300 km/s, T = 3 min. The typi- 
cal growth time is r = l/y = 7 s. Although selection 
of the value U,’ is rather arbitrary, the estimated 
values of the growth rate appear to be correct. 

These disturbances would map to the poleward 
boundary of the diffuse aurora1 zone near local 
midnight. Aurora1 oscillations, related to these dis- 
turbances can move eastward (as well as westward) as 
a consequence of the electron drift under the influence 
of the electric field, and gradients of pressure and 
magnetic field. The drift speed at ionospheric heights 
is about 5 km/s and the wavelength is about 500 km. 

Corresponding wave-like oscillations of the pole- 
ward boundary of diffuse precipitation are observed 
during substorms in the morning sector of the aurora1 
oval, with the name omega-bands. It is likely that the 
aurora1 westward travelling surge is a manifestation 
of the KHI which develops near midnight and drifting 
westward. Contrasts between pre-midnight and post- 
midnight oscillations can be caused by differences in 
the source of drift. 

6. BOUNDARY BETWEEN INNER PLASMA SHEET AND 
PLASMASPHERE 

In the evening sector, plasmasheet particles convect 
sunward whereas particles in the plasmasphere coro- 
tate in the opposite direction. The velocity difference 
across the shear layer is about 100 km/s here. As 
before we suggest that the velocity is zero in one 
medium, i.e. the velocity elbow is located at the edge 
of the velocity profile. The magnetic field has the same 
direction on both sides of the boundary and it is per- 
pendicular to the plasma flow. In this case the dis- 
persion equation can be written as: 
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xkF(C&-fl:)‘:‘. (56) 
0 

The following simplification can be used: 

c;, , c; >> cl:. 

Then: 

(57) 

u 

ph 
= K,(b21pl - Re (VA/ VdJ 

Ib,lp, -(K,/Vz,)o1* ’ (58) 

kU3WWVzJo 
’ = IkpzIp,-(V:I/V,,),l*’ (59) 

The differential equation (15) will be reduced to 
the Rayleigh equation (16). The expression for the 
imaginary term of the logarithmic derivative of the 
transverse speed (22) is obtained by integrating (16). 
This value is equal to the derivative of the oscillation 
phase V, with respect to z and, therefore, it describes 
a velocity vortex. The vortex centre is at the point z, 
where U, = UP,,. 

Let us examine the behaviour V,, at the point z,. 

KVZ, 
v:; + u’z = 0 (60) 

li 

This equation is analogous to (42) if CD* = 1 U:/U:I. 
Here 2@z”* depends on the curvature of the original 
profile at the point z,. Assuming the ratio 
) U~(z,)/U~(z,)~ to be less than l/L, we can use the 
approximate solution (41) for the whole region. Sub- 
stituting this solution into (22) expressions for the 
phase speed and growth rate can be obtained. 

U,, = PAP, +PzW:olk (61) 

CO 71PI U”(ZJ 

y= _kp,+p, U’(z,) 
~ ~ exp ( - 2kzJ (62) 

We can see that the growth rate decreases mon- 
otonically when k increases. This means that the 
growth rate reaches a maximum value for the mini- 
mum wavenumber, which may be defined from (62) 
for the maximum phase speed. 

k= ” ~ U:o/Uph = 
PI+P* 

JL KJuxnw 
PI+P* 

(63) 

Maximum values Ux,,,, are far from the boundary 
where z, becomes maximum. Thus, we obtain the 
phase speed equal to the maximum velocity of the 
flow. The wavenumber for p, = p2 turns out to be the 
following: 

where iJ& is the derivative of the plasma flow velocity 
with respect to z on the boundary. For 

u:, = U,,,JL ?Z 0.02 s-1 

we have 1 E 6 lo4 km, T E 10 min. The wavelength 
in the ionosphere would be 200 times smaller, i.e. 
about 300 km. 

According to Lui et al. (1982), observed oscillations 
of the equatorward boundary of the diffuse aurora1 
oval show wave lengths in range 200-900 km. To 
provide this wavelength for a given phase velocity 100 
km/s, the value U:, must change in the range 0.0077 
0.03 s-’ which seems to be feasible. The growth rate 
for L - 1 R, is y - 0.05 SK’ and a typical growth time 
would be 20 s. 

We can see from (64) that the growth rate is pro- 
portional to U&, which is a value of the velocity 
derivative jump on the boundary characterizing the 
significance of the surface. Since the wavelength and 
period are inversely proportional to U:,, disturbances 
with the least wavelength and period will have the 
largest amplitude among the different disturbances. 

7. MAGNETOPAUSE 

The magnetopause seems to be the most suitable 
region for the application of the analytical expressions 
derived in this paper. Indeed, the plasma flow velocity 
changes here within the thin (- RE) boundary layer 
dividing the magnetosheath from the plasmasheet or 
the plasma mantle. Moreover, the magnetopause 
proper, i.e. layer where the magnetic field sharply 
changes (on a distance much less than 1 RE), divides 
the boundary layer from the magnetosheath. Accord- 
ingly, we can assume that changing the plasma flow 
velocity begins on the magnetopause; the first deriva- 
tive of the plasma velocity jumps here. In this case 
our analytical solutions show that the surface wave 
resonates with velocity vortices in regions of varying 
speed are propagate along the magnetopause. 

First, we shall consider the magnetopause on the 
flanks of the magnetosphere. We shall take the plasma 
parameters in the boundary layer (medium 1) and 
in the magnetosheath (medium 2) to be following: 
Vo2 = 40 km/s, C,, = 100 km/s, V,, = 750 km/s, 
C,, = 800 km/s, p2/p, = 100, and the plasma speed to 
be changing from 400 km/s in medium 2 to zero on 
the inner edge of the boundary layer. We shall use a 
coordinate system moving with the magnetosheath 
plasma particles. 
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Then the dispersion equation will be expressed by up in the polar ionosphere as mesoscale aurora1 struc- 
formula (56). In this case: tures near the poleward boundary of the cusp. 

c;, >:, n,‘, c, > n;. 

[(G/v,Jo + WQIl -~:/G%l”’ = k&p, (65) 

The differential equation in this case is the Rayleigh 
equation (16). Unforlunately, a strict solution cannot 
be obtained by a simple method and we can only make 
rough estimates. Examining expression (65) and using 
experimental data on the plasma parameters, we see 
that 

Re(LL/%) >> Re(V:,/VZJO -k. 

Then: 

Now we examine that part of the magnetopause 
close to the subsolar point, for example, regions 
located in the equatorial plane within +3 h of the 
noon meridian. The magnetospheric magnetic field 
here is orthogonal to the plasma flow as well. We 
assume the plasma parameters to be the following: 
Va2 = 120 km/s, C,, = 170 km/s, V,, = 400 km/s, 
C,, = 800 km/s, p2/p, = 10 and plasma velocity to be 
changing from 200 km/s in the magnetosheath to zero 
on the inner edge of the boundary layer. The formulae 
remain the same and we obtain Up, = 100 km/s, T = 3 
min, y = 0.2 s-‘, 1 = 2 x lo4 km. In the coordinate 
system at rest relative to the Earth, we have the same 
wave parameters. 

(66) 

(67) 

Using only the first term in this sum gives an oscil- 
lation period equal to 25 min for U:, = 0.4 s-‘. Since 
we are not going to deal with oscillations having much 
longer periods, we can examine only such oscillations 
as below: 

(68) 

Then we have in (65) 1 >> @/C?, and 

Q, = CL’(kp,lp, - (Gi V,,)J 7 (69) 

(70) 

~ exp (- 2kzJ. 
’ = - R P2k U:(z,) (71) 

These expressions are very similar to formulae (57) 
and (61-62). However, here we have a2 < Cf2 and, 
therefore, we cannot assume that UP, = U,,,. The 
maximum growth rate will be for minimally possible 
wave numbers amon,g all oscillations (68). Suppose 

,i=2%. (72) 

U,,, = C,,/2 I; 50 km/s, T = 30 min, 

y = 0.1 s-‘, I = 9 x lo4 km. 

In the coordinate system at rest relative to the Earth, 
we have: Up, = 350 km/s, T = 4 min. Oscillations, 
generated in this part of the magnetopause, can show 

These oscillations map into the polar ionosphere 
near the equatorward boundary of the cusp. 

8. SUMMARY 

The main objective of this paper is to reveal the 
mechanism of the Kelvin-Helmholtz instability in a 
compressible plasma with a magnetic field. It has been 
shown that the wave propagating on the surface of 
the maximum of the second derivative of the flow 
velocity has the greatest growth rate. The phase speed 
and growth rate of this wave depend mainly on con- 
ditions at the resonant points. There are four resonant 
points for the pressure variables and nine points for 
the transverse speed variables. 

The main flow velocity at these resonant points 
differs from the phase speed of oscillations by certain 
quantities such as the Alfven speed, fast and slow 
magnetosonic speeds, and cusp resonance speed. This 
means that only those perturbations with these speed 
differences provide feedback at the resonant points. 
The Kelvin-Helmholtz instability is developed if the 
feedback is positive. 

For the velocity profile with a strongly developed 
maximum of second derivative of the velocity (sharp 
elbow), analytical expressions for the phase speed, 
growth rate and wavenumber of the fastest growing 
unstable mode have been obtained. These expressions 
have been applied with some necessary simplifications 
to regions of the magnetosphere where sheared plasma 
flows are observed such as the magnetopause, and the 
boundary between the inner plasma sheet and the 
plasmasphere. Simple analytical expressions have 
been derived for parameters describing the plasma 
oscillations. These parameters evaluated for three 
above mentioned magnetospheric regions are pre- 
sented in Table 1 
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Table 1. 

Magnetospheric region 
Period Wavelength Phase speed Growth rate 

(minutes) (lo4 km) (km/s) (s-l) 

Boundary between plasma sheet and plasma sphere 10 6 100 0.02 
Boundary between plasma sheet and tail lobes 3 5.4 300 0.14 
Equatorial magnetopause on the flanks 4 9 350 0.1 
Equatorial magnetopause on 45” from noon meridian 3 2 100 0.2 

A comparison between the calculated and observed 
parameters of plasma oscillations is practicable only 
for the magnetopause where experimental data are 
available. The following values are typical of mag- 
netopause plasma oscillations: the period varies from 
150 to 600, the phase speed is in the range 50-250 
km/s, the growth rate is -0.02 ss’ (Kivelson et al., 
1984; Lui et al., 1987; Junginger and Baumjohann, 
1988; Wolfe et al., 1987; Potemra et al., 1990; 1992; 

Sibeck et al., 1990). We note a general agreement 
between the calculated and observed parameters of 
the plasma oscillations. Therefore, we conclude that 
our simple analytical expressions for the KHI give 
adequate results. 
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